%PDF-1.3 % 108 0 obj << /Linearized 1 /O 110 /H [ 1159 465 ] /L 1256684 /E 27102 /N 16 /T 1254405 >> endobj xref 108 35 0000000016 00000 n 0000001051 00000 n 0000001624 00000 n 0000001856 00000 n 0000002031 00000 n 0000002091 00000 n 0000002645 00000 n 0000003452 00000 n 0000003864 00000 n 0000004510 00000 n 0000004532 00000 n 0000005288 00000 n 0000005310 00000 n 0000006099 00000 n 0000006121 00000 n 0000006820 00000 n 0000006842 00000 n 0000007633 00000 n 0000007655 00000 n 0000008422 00000 n 0000008845 00000 n 0000009395 00000 n 0000009417 00000 n 0000010207 00000 n 0000010229 00000 n 0000010928 00000 n 0000010950 00000 n 0000011590 00000 n 0000017964 00000 n 0000022005 00000 n 0000026504 00000 n 0000026642 00000 n 0000026782 00000 n 0000001159 00000 n 0000001602 00000 n trailer << /Size 143 /Info 106 0 R /Root 109 0 R /Prev 1254394 /ID[<7d94e6154776bed31175df51ff290c43>] >> startxref 0 %%EOF 109 0 obj << /Type /Catalog /Pages 94 0 R /Metadata 107 0 R /JT 105 0 R /PageLabels 92 0 R >> endobj 141 0 obj << /S 395 /T 481 /L 543 /Filter /FlateDecode /Length 142 0 R >> stream Hb```f``ig`2@ 9000H,Y[﹡<M):P»M1w{.$F -^qUl6G`@` OHsY EsJz/: 6/J]vx" 4*{0X&(z#@Hl@` t be/5Eǎ6 ? ?Ơq a&o4ȱ`oX ~ @Z \@ , ,v*ovfV5C=lHM4d*T7@U endstream endobj 142 0 obj 342 endobj 110 0 obj << /Type /Page /Parent 93 0 R /Resources 111 0 R /Contents [ 118 0 R 120 0 R 122 0 R 124 0 R 126 0 R 130 0 R 132 0 R 134 0 R ] /Thumb 56 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 111 0 obj << /ProcSet [ /PDF /Text ] /Font << /F1 114 0 R /F2 113 0 R /F3 128 0 R >> /ExtGState << /GS1 139 0 R /GS2 138 0 R >> /ColorSpace << /Cs8 112 0 R >> >> endobj 112 0 obj [ /Separation /All /DeviceCMYK 140 0 R ] endobj 113 0 obj << /Type /Font /Subtype /Type1 /FirstChar 32 /LastChar 122 /Widths [ 278 333 474 556 556 889 722 238 333 333 389 584 278 333 278 278 556 556 556 556 556 556 556 556 556 556 333 333 584 584 584 611 975 722 722 722 722 667 611 778 722 278 556 722 611 833 722 778 667 778 722 667 611 722 667 944 667 667 611 333 278 333 584 556 333 556 611 556 611 556 333 611 611 278 278 556 278 889 611 611 611 611 389 556 333 611 556 778 556 556 500 ] /Encoding /WinAnsiEncoding /BaseFont /HNHLKM+Helvetica-Bold /FontDescriptor 115 0 R >> endobj 114 0 obj << /Type /Font /Subtype /Type1 /FirstChar 32 /LastChar 213 /Widths [ 278 278 355 556 556 889 667 191 333 333 389 584 278 333 278 278 556 556 556 556 556 556 556 556 556 556 278 278 584 584 584 556 1015 667 667 722 722 667 611 778 722 278 500 667 556 833 722 778 667 778 722 667 611 722 667 944 667 667 611 278 278 278 469 556 333 556 556 500 556 556 278 556 556 222 222 500 222 833 556 556 556 556 333 500 278 556 500 722 500 500 500 334 260 334 584 278 0 0 0 0 0 0 0 556 0 0 0 556 0 500 556 556 0 0 278 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 556 556 0 0 0 0 0 737 0 333 0 278 0 0 278 584 278 278 0 556 278 278 278 278 278 0 0 278 0 0 0 0 0 278 0 278 278 0 0 0 278 0 0 0 0 0 556 0 333 333 0 222 ] /Encoding /MacRomanEncoding /BaseFont /HNHLHJ+Helvetica /FontDescriptor 116 0 R >> endobj 115 0 obj << /Type /FontDescriptor /Ascent 718 /CapHeight 718 /Descent -207 /Flags 262176 /FontBBox [ -170 -228 1003 962 ] /FontName /HNHLKM+Helvetica-Bold /ItalicAngle 0 /StemV 140 /XHeight 532 /StemH 140 /CharSet (/P/A/G/E/space/R/O/F/S/a/c/t/o/r/s/h/f/e/H/i/z/n/l/T/p/b/m/J/C/period/v/\ one/asterisk/comma/g/L/two/B/k/three/d/y/w/M/u/x/W/q/I/D/N/hyphen/j/colo\ n/V) /FontFile3 136 0 R >> endobj 116 0 obj << /Type /FontDescriptor /Ascent 718 /CapHeight 718 /Descent -207 /Flags 32 /FontBBox [ -166 -225 1000 931 ] /FontName /HNHLHJ+Helvetica /ItalicAngle 0 /StemV 88 /XHeight 523 /StemH 88 /CharSet (/H/o/r/i/z/n/t/a/l/space/T/s/f/e/p/b/E/m/one/C/u/period/I/M/B/parenleft/\ two/zero/four/parenright/six/colon/hyphen/O/j/w/c/g/asterisk/F/d/v/at/co\ pyright/A/P/h/G/R/comma/nine/seven/D/k/eight/five/U/S/N/three/Z/y/W/q/L/\ semicolon/x/percent/K/J/V/X/eacute/acute/quotedblleft/quoteright/egrave/\ grave/slash/Y/Q/endash/question/quotedblright/ccedilla/cedilla/atilde/ti\ lde/aacute/iacute/dotlessi) /FontFile3 135 0 R >> endobj 117 0 obj 676 endobj 118 0 obj << /Filter /FlateDecode /Length 117 0 R >> stream HtR0ﰗ6C,UIHh)L;;up,F6Lߨoٕp,I"Yow=͂Y蓂*&a M%镀UGO"0d\)ȶuͺmmWl5m5%̛rS}Ƹ&<>rqeDɠS"$PH5zv_JɑɹH!{*; ´7`,@:1/FaOQ˶ɵ8aUhB,Zγ=PL +$I2iŖE}}hC 렰Εla]οB_x2rI ȉz*HIqߗKCXVztC> stream HtTN1<.UV UlecCcoRC̙d8.`!&T6tMGᣲNC贁Z F܈~ Mp|9*겂YRXObiԃGF>@ǫsH㺈p{sz9)Y1=LY@HHJPE#2KX֌5D#nq|M5gRz%l>|A+[NwآჇ~·'-I7\9WH>Wߍ51xqw}33cIʚeoV=r it捁'UM$)Y 8N}:YF5_V-7^ vuS2/S2VCtiz*KY4"dEMKjj:~ʒkmr@A {\4[X(!-|1qDTėr @`7y ;zCmd">a$.75T+C!¸DZӑX23қ᧤@^$> stream HtTn0"V%rc4@zI@ET $PW3Zʼ5u bUEQo=,~fўIiף]U^gwp~Tp`4Aa70-Zj-O [ec$To9'‹5OBG'sumGwe<䌐> ̃'-f)ն"Dڰϔ'<FI)FLN, <#xF=Z}Šۀnu:>!x9 |HdR8ء? j"s N/ga$8".t-"(bTYn0hdb/A3^ /dhѝ!?UEOV"2Lc[?@'}^X U$S쏄 endstream endobj 123 0 obj 711 endobj 124 0 obj << /Filter /FlateDecode /Length 123 0 R >> stream HtTr0^vؓvo$d$9!zVr ${o8ɊCj.M _bnC# GPU?)E4SnUe PhP$AP#kգSk {I1|c%:ȴg w{ 6Js ubQ 5M,ERLxyr+4P`룇5e:*9,bXch)*ʻ5 ] TI\&Ė<^9T]cERvq=]Q,c" W~gyMj~RE gwBJrey9hpX!](W Eyɀ3X_!'ʊE9Q(U&I[.7)8F}Wf8%pqמ1NHܻHEnRCF FHa&{ I-NāռQ)ASkrzDPhU98̔‘œų9|x䃰;(!5}Mm@̽l z9$:I1+UfAl&KcF\&]tCi<^{sWkEX= c-@F]y%l~iO(eT#g+Hh7a7\aG endstream endobj 125 0 obj 687 endobj 126 0 obj << /Filter /FlateDecode /Length 125 0 R >> stream Hn0ﰗrd|*EݚhimI=d"G3V$P5zj+Xc n궓 ߡVN*r UMO,[^Gdj$Z F_EaZq+4i>i^Xj9'YQJF;mFhU70exU_,KgkwQנur@ՠ5|-pg2& j~Ԇ%u]gzSR=sBŋcYKs}oV\?!"\5t/Id"Xhz2&l4IO{kTw@{j33V^4h[Pwh(8%8LYC/=&$`֏6$Rv/F[iP{<)e8VM~zȀbl&%$eP|}cVCM&!wxTaW+8[S\+DE#[.%G#,e 3}Xy66z:eQ#z #FAiu\𭖝%7xdI&TJQ.5͍3\V[F'?GR³xYf%G8? rjc endstream endobj 127 0 obj << /Type /FontDescriptor /Ascent 718 /CapHeight 718 /Descent -207 /Flags 32 /FontBBox [ -166 -225 1000 931 ] /FontName /HNHMGE+Helvetica /ItalicAngle 0 /StemV 88 /XHeight 523 /StemH 88 /CharSet (/e/t/space/a/l/period/T/y/one/hyphen/c/o/p/i/three/g/s/I/D/r/h/m/n/P/B/A\ /b/comma/R/two/L/v/colon/d/f/w/u/S/z/j/k/x/slash/zero/G/nine/seven/E/O/C\ /H/V/W/four/Z/N/six/F/K/M) /FontFile3 137 0 R >> endobj 128 0 obj << /Type /Font /Subtype /Type1 /FirstChar 32 /LastChar 122 /Widths [ 278 278 355 556 556 889 667 191 333 333 389 584 278 333 278 278 556 556 556 556 556 556 556 556 556 556 278 278 584 584 584 556 1015 667 667 722 722 667 611 778 722 278 500 667 556 833 722 778 667 778 722 667 611 722 667 944 667 667 611 278 278 278 469 556 333 556 556 500 556 556 278 556 556 222 222 500 222 833 556 556 556 556 333 500 278 556 500 722 500 500 500 ] /Encoding /WinAnsiEncoding /BaseFont /HNHMGE+Helvetica /FontDescriptor 127 0 R >> endobj 129 0 obj 710 endobj 130 0 obj << /Filter /FlateDecode /Length 129 0 R >> stream Hlr0 EqX=,G^fv.邢`DzʮI+Lc4wր{ѐ[x'hѡVݟ]!mU{\S\Uy+c9 hjKOC0ԣp@\WzXW%@v{cE|;o렟)g4v2t/+sИB`U\Hv_=sa:n3&0H=e]:~a=)ȈNb7k)+nRZy1kۼ^@ώ[Dybv~paˑ=:^hVH F S!E<kHw{1q)$3Ren:c?/-vZ<3za^Yaǟ8b+& QٚPN@6GN#[ FpFxҜP*59s>hfYbQLaʫM&6Fxtl8zTïWOݘΛNJ^nd#vw* GWyM 8H> stream HMn0O;R*lV$KDWA)..hil3IbPYCތ'ŗI"'Pǹb?y PnVeeFL\|{EWD Y9%s}-Gw[7 j`qb賵t/,^=oFEyGXwhBkvUM/ӬAjxuJhwX)"ժ T^`OIOUh[$8ZkaZSnoa|$-4j<ޕ:O Uu:qQ{Kp(1y<rAÁrйOg* B"i&,G/afDə 䫱U雠w2aGr_!TʵJo:' XtJFaj )M9[lPRe.2o-)췪º4?TzF@D@ x.2y%!TRM/".._PQr34yz ) (N<6>Ă%d?g endstream endobj 133 0 obj 560 endobj 134 0 obj << /Filter /FlateDecode /Length 133 0 R >> stream H|Rr0;:L,$+#CLP|Ģ=Ov8r5o݄ &qc^*- ZԿHY 2Fr tUDx,*|O;j*6]p6 nՊTi}>uQ"mP-huҸDHmcZ݁C>,x0/ب8v5QCq|9?|D34ߞn GANYןH~`TQ+RUa3!A4ɊSv1(?c1Ч1<'K-~SGsNiSz}|U/ `>$%`y1 ؁YKq^Ih><6y{Zk+`%HC j:iuc>w%E9a0h߶+h<4EvXV/r0!6 ;:*w-)Tǭzv57FmR=þ*jgji`_8Du`?*i endstream endobj 135 0 obj << /Filter /FlateDecode /Length 6281 /Subtype /Type1C >> stream HTkPSI7$ ћ*[ PFPQH(HBPAdgVyQQTFq(0[L58[j>}];] q|jꐰȓr"!3"qb r_٠g sX8^TLR)4 $ }y[O+Y&S%yZT)UqlD,9YIjJk'B-Ѩd8r$Ld%˂%q2OJ0+jLRUcn^H$"l 0%eb.ŰVaփa,lǶ;aqk| Os ˝Ϛ f9 +8{{p+u=DXˬmmm$یMqb;ö{vv]gͻ`оaCԲ㎶َ~4 ^QT#/&;98sJpryVg b"p]f|ŋ12!/eLy yx{֮֘ub,w1>xKM0bS2'aқLQ[70rZ}Xp+z\S 0'D~(-8RH M}W^MfP٤ ) 0߂!lѼn V8'`AbۊYIwF|LjO|4p~Ő7cq0)nyF<^){ i4 2Rhr$xm$^ FWM~.:9הŽ4zG_k'-R uB e@ QЊbYD...Eds(ҿHo]Ց&ή5 utG͍++7Q5⊔rO/Wgv MLq(N`U |^AdwT\᷆ "&*"prpi<^C G_#gf~Ҏ3DߩnvONp#;agsll4 g_AD@a fx7;.tv7Ed~DAۋp\JKľ'#gCbO387wcbCd$۝ r@B˗K\3̀AŦ"]_MY3W|BΚ#wV'x4g[t,A|n7Ge?wStJaePS;+Œ-;F{z`YAEڿ/7P&v!V{Xln)9d?B0}%C.,:bQ Ds<4:( ˣ]?I}cpHoAQ Av(`ҝX  t 7d0Y(fJ;91,i<< )ߥ\Ѱ%^~#ɲڳǰ!9`,V0='q\!'8)iQ[o,]M!y&.b䂚@М矼{״{ԻQnG~$Ku+򩬰pUC KMzGK'v%_0MX7qĶ )>"(s(vwܽZ'[gU)`{K,Hߗ:i{Ƥ_[٪:;S9I W3VZ\ኀ^>"ko ؒ8m TK;Ü+cz2u|'(!1JLHP@rd$2$0Q7\TUqyUM慄Z\lhݝhjYy?t cS#SvDH#[o2쿼r^cqie\mf45?2>'2ۛғ㚥!/3&wGb2Rka`Ų;vkkTe ;#'Fn@3)T3ESA;~ڵkdO˚Z3&*\@PnK{+-=zroX?BH\ UgQ(k⊶\YLƆnʥg$,kV-D0I*oxul,s=zX1 s Ww{wJ/jj¦!Vr 5Rbj-uU/jAH$<I AH `x#oAyXv[]V+:]ӝvwf'99{I5YM8ػk;Z2(FS;a36~ewZu=̊ ~wb&ʛ{4'EfV0ӊ'<}x& Ĺ0N1 ߆w/&>*c"L[?Sm(d5#y-^jj#suR"?]K瓷J2OjtSÇ9=EҖj3x/D/5%VWBɱxGIgop_KQ"WvmᄷN6 k=GyZt].+׵*,]E3kp=:&N-Ǵr*:;E CsW3NX5@㤱1 Dkh3|chd\~&~$q~a̓J N ~ق} :#} NZ$ͫ8p ayw1uf"ĩa쵝7i ~"oZ:04j<Ҁ,mC ʳf/$+L z"._FUeI-9J!I+>ʏI*PCY ["4yG p@3N¢smzâ >lx@6|)v4;vdop3fקry i8Lg-PAşY23UD"I@Ue 92]`$\لGZ[mQd鴟&xbfP?5R~ qr1 Pl8<я`1g <7Z dPOZ&8PB`8.yH`'CqnNY´ifͬ@•yS6e:Y5UZߡw+l Ug {Wmy 8b8n s]96XFS~lyOO5эK#Tp&si@<77r)?}y< b7;] ,'cL@ \^h漚&pq!f)[ % O/Ю,O+W`~Emw/:{EU\ck:U%%0ٝ07PKEf1sݹSU8Xz^v̡\$'RFfH1S싕ۋ<͞Gee^<98, `<!0&-Zz}P.xN({vEI 8x Ds<6+CoA_,;r |O}(Us+ŏ^OR ckAl)U x^ .Ӽ0+N endstream endobj 136 0 obj << /Filter /FlateDecode /Length 3948 /Subtype /Type1C >> stream H\U PSg7+``M0 B[+e R#EE@!Jx *ZMAb+ *;(-nݎnKtEgW9|$!$I\O^+i9j&1;DEd.(eZkv8gN&WqgG'Vh3tmfa"o'iyz:]|eju u1ӵzF֫u9`4z&1 TFdh yj&8IHzGc4VEI$4j H# b&pr??Cc'!Lb7B "|[ˏ ~HA'$J'+ iDtm>n]K%"f,ۉ#9f%Ũ J85x5Yj!8~E :BTy A'e--)j"Su7*0yhlgR _<'%fzВ>+P{9.r#™悐|>:_fztW?^ C}d^KJ@bAjf"+돡*%l6F`?O)W{'4$I+7T{{ )]JI-kO]O(Y(6T4q2ߒ,dgbH2`JY5\4KyXb]@6H#B6=_G$@J` .o xeEz^>CmB¥|,'q ܐI~wq7u[MnoQHZXdgv/Tx"')Q=Q[u(BN=!w@ւ3i~7>*%29۫o²=rߛeʞjʫ{ܨW7QRn)$(#Uܿ׊/'Qq1<ʻC9z򚟜zk;[EF*VOW #J\nnol8ٔ8 XΊI$fNNƈn]x%9p fAr|pdSceykDdH'tsWHF%̥?A G+1f(5b4] {>g%I  %906Ca; t9JG uA7橹f&gX AO$9f҄qG8h%'D*T 7FcwZ oT_8y\ol+~3{9YXWx˟-vvRhƩ!W[reHc')pM 9~9~ֈV#KBݬQ8ݕl&͸;*x V܌\#YT&"όxCGڧ򧏚o+UKUsjʢ+3u[s]ͦ@}j3VRɱ̐& 9G ~ǥ{q$(s2̾T{1ݱiCN+Gvx͵x72qƻ}- TO~SҸw,sl\R%^"/ ʹ]YSLr,"r s{aw>g)$YZI XPsNG J$!H]2Uh,.}Rq(3@\,-܁JTvƥ{ ȚV;.*`R,XD!PJ oT@B5D $`W]Rneuqm:~9f;ǙLfν|{}a&cZ!ҥIK/T=r&JC-;g%WhH8}{.9UYu<䇫>̈́9c^W=eˏ`\!X~ĸRmՑGroolh:V[R#1Z^L.[/ $2`-6Mo32k W^x@|~Í%@+UE|[aRg)$ ޓOɴ YOr' + Mv\טKYg&Yi;;m5j(vX+% hQE2v7V۔#AulJ^-|I>BaS+#FP'"U▧0 yDQQlY.\Y+ԟ0IFTFH-|1DQ"]~N^$O:˺ʯPϝKo|U1Xa'k+gXPP_=^p#|"27J{#wڽ健;5\PeWNMU _yR1>.Р(  n& _lcnz'-V¿j΋g7qQJ%  4Ydl*t2f '&7UED3sEF)N2hHuŶf4f)l6X3~Ub7,> ؗ|,IgIXfgD{Z@u r>,&1%'Ĺ&< !?aU-&Nε* ̾i;6Џ 95c/ej~Ca} ] IsU;ޱkI:`&3 1V'P~rYMJ 5JeזCpu#RExi Yts̹oɷ в{to{iౌqD3<;qEwHYuҩSEQNa>f{A( p|w} ĆgE74å#U?L3?EH3p]=j>SpC]*(-cv&;&2d2]!~~"`3M5Cb+r&;U&o-N_:H.Z k"L'OϷhZWiȣZ^N"^Ƅۖl{X+FoDMe &Y>sKVy;뻰% xbCb> stream HTT TS~//1A$#q*8T7$4 18#nYXbW8.mq :.xCۗ8K{=< qq 1cYfI X i\`c(,`1//Jy K5mRM.! d5DPJC0S%tzC X8B[hhXѰ" >( Jp3_;p`vr:zqK{ֻ8y&lA`Z8.[e 6 d2%29c8L[uO*NUm6&#Qdo@t4'Oߔ9˫sG:νțkU5ϙSj {#R<%w9]&2Eat߼ caH `O==trB$NKjLPy[Јgu?Uȁkmg׿y~tkPpH\d!Pusz$$jAÄlD ,GxoI:mEB5q8,Sg.@r*ŢмGخ(\!AQzaS' @Af Lp,[ldO)'ng+@V,T#Q i{B{A@&+_"ڱ>?&ҡƃ< RQMFHz C_Vs<29V&'%D텠7ך?\+ϲpk<6b^z-D); }8ԃ!Z(B9C#)˖0+4x%:509ʀĖ-?:ᰥ>@10(c)>ݱXٜ,.>ݲ?쳧7o찿ch:ܵ!)60a($jfg%h&BF$ rϔcs6Ȏ[*ν;~1 l7~69L7Fl7K=䏍b\[Qt <8E"#vR,$9};'X;A(;5 +L}iyY95;OӰo1`VnQ&uyLbtZ/C[m: s); Pd*e9/t4(Ž Mtm4DnF*DPSOE*λ)J;w%8$w%)d>'φb{5jJ㤑ήfѺŲYdQYn;ݚ q!WEWڗ0AĵĜ{b'A &xV$js#NA{ۈ_\g;(sBs$å/C/zv,Cy_ KP0w{]Ȝ;ERf7m_X"|P{٪CF*%CcGR D0+Z,Ҭ~_K_2ӊT-(vH؆'ou8c^*5R!/S&#;/ܟFtMTbԻ,OT[QNq>R5Fǘk 2 ZNgazqS%=x|\X(:yGJe9DL*Q*`Fzy[tTuf= C9:Ԛ8RKo G9F#L2߃lXX[F+cTͩcuMNmZl,39DqE2η&ugv0S:霨k68Y3R1$1OX:iC54y~N;h~{6Į5Xx{jjDC2XX=~X 6 ^i09UNSbI% D |%_k@ &hcC&U$lSwOżϏFik74%'[Gު}'I/勇$;rsv]/֎[k9rjmaHg%g̀N1̇$Npg $+2Lx-RرӀ):&X3K{,{Jb U,XDOiQ~|x9Szw՗;z(8s"T!DY8v+;8qY^ C[UP 6/B  ;#->?RⵉnA_ɨ֥uΞj]>_?>حK!5tp^tu~}9$ 4$sқOuu ZZa+LNIiJ|YZS݀V6=B %""6/M'F or-b%L-$ח)mȹdL W{/ȶjJڥw H(Pr"OzBV@;sq9'I" J al =:v h)]̸N2{K\(u,1Jm)Vwa)X#F5|dpC58N_YS%7rtIj4'8HuYYK ,:PQ(FU_~]o- a?= I||rp3Hj NUXWPyLIYQ,L\+BU^ߺ3.3)=0Asnf'. O"9 8۽ѫh&wfnwyj 6-2$i<hq#N<.T5'y%\l fjUz_CP4|M\cN{k@\i{٩sȬIl؝#?@$61yʩjw?Di ރer/l, ;6؁;`M&GS֍wVÅoaHLkbSlMq6&Ôa,i7ZmoxrI-zA1')#!)&EBZ,KR/ʅrT (a ]!ɹK3g< xɏͥ v ↨qK٤DoK]k)g0/qyS.퀣X{k*G$ZFZQP%44}(wjx>+zqJ`AԂj"+4C08A ewp -3#. )l^@S?}=>D:_]8cM!]wK}w>Moᆲ:l:@3:q5) `fGEV#VX4WՖKVMco6uEKbmߛ~JI#d,od}'{ϲ?dsf}fuI]I endstream endobj 138 0 obj << /Type /ExtGState /SA false /SM 0.02 /OP true /op true /OPM 1 /BG2 /Default /UCR2 /Default /TR2 /Default >> endobj 139 0 obj << /Type /ExtGState /SA false /SM 0.02 /OP false /op false /OPM 1 /BG2 /Default /UCR2 /Default /TR2 /Default >> endobj 140 0 obj << /FunctionType 4 /Domain [ 0 1 ] /Range [ 0 1 0 1 0 1 0 1 ] /Length 20 /Filter /FlateDecode >> stream HN)-PZ^(! endstream endobj 1 0 obj << /Type /Page /Parent 93 0 R /Resources 2 0 R /Contents 3 0 R /Thumb 58 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 2 0 obj << /ProcSet [ /PDF /Text ] /Font << /F1 114 0 R /F2 113 0 R /F3 128 0 R >> /ExtGState << /GS1 139 0 R /GS2 138 0 R >> /ColorSpace << /Cs8 112 0 R >> >> endobj 3 0 obj << /Length 14319 >> stream BT /F1 1 Tf 9 0 0 9 55.93 779.115 Tm 0 0 0 1 k /GS2 gs -0.0001 Tc -0.0003 Tw (2 Silva )Tj /F3 1 Tf 9 0 1.913 9 90.43 779.115 Tm 0 Tc (et al)Tj /F1 1 Tf 9 0 0 9 107.47 779.115 Tm 0 Tw (.)Tj /F2 1 Tf 37.9351 29.4096 -29.4096 37.9351 34.496 531.1378 Tm 2 Tr 0 0 0 0.45 K 0 J 0 j 0.576 w 10 M []0 d /Cs8 cs 0 scn /GS1 gs 0.0686 Tc -0.0001 Tw (PAGE PROOFS)Tj /F3 1 Tf 9 0 1.913 9 56.53 748.275 Tm 0 Tr 0 0 0 1 k /GS2 gs 0.0166 Tc 0 Tw (al.)Tj /F1 1 Tf 9 0 0 9 66.49 748.275 Tm 0.1389 Tw (, 1994; Kapitonov and Jurka, 2001\). Many Class II)Tj -1.1067 -1.2 TD 0.0014 Tc (elements encode a transposase and possess relatively)Tj T* -0.0129 Tc -0.0695 Tw (short inverted terminal repeats, both of which are necessary)Tj T* 0 Tc 0.0391 Tw [(for their mobility)68.6(. )61.8(Although many Class II elements share)]TJ T* -0.0027 Tc -0.0694 Tw [(some sequence and structural homology)64.6(, it seems unlikely)]TJ T* 0 Tc 0.0203 Tw [(that all Class II elements share a common origin. )46.4(Among)]TJ T* -0.0353 Tw (the major groups of Class II elements are the )Tj /F3 1 Tf 9 0 1.913 9 235.81 683.475 Tm 0 Tw [(mariner)15.7(-T)97.3(c1)]TJ /F1 1 Tf 9 0 0 9 56.53 672.675 Tm 0.1264 Tw [(superfamily)72(, which is widely distributed among animals,)]TJ T* 0 Tw (the)Tj /F3 1 Tf 9 0 1.913 9 69.07 661.875 Tm ( )Tj 0.3784 0 TD (P )Tj /F1 1 Tf 9 0 0 9 81.85 661.875 Tm 0.1004 Tw (element family of drosophilids and other flies, the)Tj /F3 1 Tf 9 0 1.913 9 56.53 651.075 Tm 0 Tw (piggyBac)Tj /F1 1 Tf 9 0 0 9 93.55 651.075 Tm ( )Tj 0.324 0 TD 0.046 Tw (elements from butterflies, the )Tj /F3 1 Tf 9 0 1.913 9 216.73 651.075 Tm 0 Tw [(hA)76.3(T)]TJ /F1 1 Tf 9 0 0 9 232.57 651.075 Tm ( )Tj 0.324 0 TD [(superfamily)76(,)]TJ -19.884 -1.2 TD 0.0405 Tw (which includes )Tj /F3 1 Tf 9 0 1.913 9 118.33 640.275 Tm 0 Tw (hobo, Ac, )Tj /F1 1 Tf 9 0 0 9 159.25 640.275 Tm (and)Tj /F3 1 Tf 9 0 1.913 9 174.25 640.275 Tm 0.0405 Tc [( T)]TJ 0.84 0 TD 0 Tc (am3)Tj /F1 1 Tf 9 0 0 9 199.33 640.275 Tm ( )Tj 0.3185 0 TD 0.0405 Tw (and occurs in plants)Tj -16.1852 -1.2 TD 0.0005 Tw (and animals)Tj /F2 1 Tf 5.4 0 TD 0 Tw (,)Tj /F1 1 Tf 0.2733 0 TD 0.0005 Tw ( and some bacterial insertion sequences.)Tj -3.78 -1.2 TD 0.0131 Tw [(The evolutionary history of )17.4(TEs is considerably more)]TJ -1.8933 -1.2 TD 0.0159 Tc 0.1389 Tw (complex than suggested by the classification scheme)Tj T* 0.0088 Tc (described above, and is currently the subject of much)Tj T* 0.0221 Tc [(research. Non-L)73.2(TR elements seem to be an ancient,)]TJ T* 0 Tc 0.0947 Tw (monophyletic lineage that predates the diversification of)Tj T* 0.0712 Tw (eukaryotes \(Malik )Tj /F3 1 Tf 9 0 1.913 9 130.87 564.675 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 151.03 564.675 Tm (, 1999\) and may have originated)Tj -10.5 -1.2 TD 0.0201 Tc 0.1389 Tw (from group II introns \(Zimmerly )Tj /F3 1 Tf 9 0 1.913 9 194.11 553.875 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 215.95 553.875 Tm (, 1995; Dai and)Tj -17.7133 -1.2 TD 0 Tc 0.0977 Tw [(Zimmerly)70(, 2002\). )17.8(The L)74.7(TR retrotransposons seem to be)]TJ T* -0.0665 Tw [(much younger)49.5(, and may have originated from the fusion of)]TJ T* 0.0122 Tw [(a non-L)69.9(TR retrotransposon with a Class II )20.5(TE, the former)]TJ T* 0.026 Tw (providing the machinery for reverse transcription and the)Tj T* 0.0634 Tw (latter the integrase activity \(Capy )Tj /F3 1 Tf 9 0 1.913 9 192.97 499.875 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 213.07 499.875 Tm (, 1996; Malik and)Tj -17.3933 -1.2 TD 0.0896 Tw [(Eickbush, 2001\). V)52.3(ertebrate retroviruses, in turn, form a)]TJ T* 0.0033 Tc 0.1389 Tw [(clade within the L)68.1(TR retrotransposons, and are closely)]TJ T* 0.023 Tc (related to the retrotransposon superfamily )Tj /F3 1 Tf 9 0 1.913 9 240.79 467.475 Tm -0.051 Tc 0 Tw [(Ty)-74(3)]TJ /F1 1 Tf 9 0 0 9 255.73 467.475 Tm 0 Tc (-)Tj /F3 1 Tf 9 0 1.913 9 258.97 467.475 Tm 0.023 Tc (gypsy)Tj /F1 1 Tf 9 0 0 9 56.53 456.675 Tm 0 Tc 0.0989 Tw (\(Xiong and Eickbush, 1990; Plisson )Tj /F3 1 Tf 9 0 1.913 9 210.13 456.675 Tm (et al)Tj /F1 1 Tf 9 0 0 9 228.01 456.675 Tm (., 1997; Malik)Tj -19.0533 -1.2 TD 0.0412 Tc 0.1389 Tw [(and Eickbush, 2001\). )13.8(The common ancestry of the)]TJ T* 0 Tc -0.0511 Tw [(integrase of L)70.2(TR retrotransposons and the transposase of)]TJ T* 0.0975 Tw (some Class II elements establishes an evolutionary link)Tj T* -0.0091 Tc -0.0695 Tw (between the two Classes \(Capy )Tj /F3 1 Tf 9 0 1.913 9 180.07 413.475 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 198.43 413.475 Tm [(, 1996\). )14.8(The emerging)]TJ -15.7667 -1.2 TD 0 Tc -0.019 Tw [(picture is one of a modular evolution of )14.5(TEs whereby new)]TJ T* 0.014 Tc 0.139 Tw [(TE families are formed when an existing )16.2(TE acquires)]TJ T* 0 Tc -0.0468 Tw (structural features perfected by another \(Ivics )Tj /F3 1 Tf 9 0 1.913 9 237.13 381.075 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 256.21 381.075 Tm (, 1996;)Tj -22.1867 -1.2 TD 0 Tw (Lerat )Tj /F3 1 Tf 9 0 1.913 9 80.05 370.275 Tm 0.0513 Tw (et al.)Tj /F1 1 Tf 9 0 0 9 100.03 370.275 Tm (, 1999; Malik and Eickbush, 2001\). In spite of)Tj -4.8333 -1.2 TD 0.0695 Tc 0.1814 Tw [(being a characteristic feature of these )13.4(TEs, the)]TJ T* 0 Tc -0.0588 Tw [(transposases of dif)15.4(ferent Class II families apparently have)]TJ T* -0.0011 Tw (independent origins \(Capy )Tj /F3 1 Tf 9 0 1.913 9 164.11 337.875 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 183.61 337.875 Tm -0.0002 Tc -0.0009 Tw ( 1996\).)Tj /F2 1 Tf -14.12 -2.4 TD 0 Tc -0.0013 Tw [(Detecting Horizontal T)49.5(ransfer)]TJ /F1 1 Tf T* 0.0051 Tc 0.1389 Tw [(When )14.5(TEs are transmitted vertically)68.8(, their phylogenetic)]TJ 0 -1.2 TD 0 Tc -0.0262 Tw (history is expected to retrace, at least in broad terms, that)Tj T* -0.0592 Tw (of their hosts. Such seems to be the case, for example, for)Tj T* 0.0591 Tw [(the non-L)70.8(TR elements )]TJ /F3 1 Tf 9 0 1.913 9 149.05 262.275 Tm 0 Tw (R1)Tj /F1 1 Tf 9 0 0 9 160.57 262.275 Tm ( )Tj 0.3371 0 TD (and )Tj /F3 1 Tf 9 0 1.913 9 181.63 262.275 Tm (R2)Tj /F1 1 Tf 9 0 0 9 193.09 262.275 Tm ( )Tj 0.3371 0 TD 0.0591 Tw (among species of the)Tj /F3 1 Tf 9 0 1.913 9 56.53 251.475 Tm 0 Tw (melanogaster)Tj /F1 1 Tf 9 0 0 9 111.13 251.475 Tm ( )Tj 0.3078 0 TD 0.0298 Tw (species subgroup of the genus )Tj /F3 1 Tf 9 0 1.913 9 240.31 251.475 Tm 0 Tw (Drosophila)Tj /F1 1 Tf 9 0 0 9 56.53 240.675 Tm -0.0349 Tw (\(Eickbush and Eickbush, 1995\): individual copies isolated)Tj 0 -1.2 TD 0.0922 Tw (from each of the species form monophyletic clades and)Tj T* 0.0008 Tc 0.1389 Tw (the relationships among these clades reflect those that)Tj T* 0.0234 Tc (connect their host species. It is departures from this)Tj T* -0.0028 Tc -0.0695 Tw [(expectation, the phylogeny of the )11.2(TE given that of the host,)]TJ T* -0.0126 Tc -0.0694 Tw (that allow us to infer that horizontal transfer has taken place.)Tj 1.8933 -1.2 TD -0.0067 Tc -0.0695 Tw [(Three types of distortion of the expected )18.5(TE phylogeny)]TJ -1.8933 -1.2 TD 0 Tc 0.0807 Tw [(are commonly used to detect horizontal transfer of )15.6(TEs.)]TJ T* -0.0129 Tc -0.0694 Tw [(The first, which seems to of)16.5(fer the strongest evidence, relies)]TJ T* 0.0371 Tc 0.1389 Tw (on the detection of elements with a high degree of)Tj T* 0.0126 Tc 0.139 Tw (sequence similarity in divergent taxa. In this case the)Tj T* 0 Tc -0.0645 Tw [(branch lengths of the )12.4(TE phylogeny are much shorter than)]TJ T* -0.0433 Tw [(expected, since the divergence between )11.2(TE sequences is)]TJ T* 0.0014 Tc 0.1389 Tw (much smaller than the divergence between non-mobile)Tj 27.7267 72 TD -0.01 Tc -0.0694 Tw [(nuclear genes of their respective host species. )17.7(This method)]TJ 0 -1.2 TD 0.0118 Tc 0.1389 Tw (has been used to identify multiple cases of horizontal)Tj T* -0.0079 Tc -0.0694 Tw (transfer for )Tj /F3 1 Tf 9 0 1.913 9 349.93 726.675 Tm 0 Tw (mariner)Tj /F1 1 Tf 9 0 0 9 379.93 726.675 Tm 0 Tc ( )Tj 0.2007 0 TD -0.0079 Tc -0.0694 Tw (\(Maruyama and Hartl, 1991; Robertson)Tj -8.4073 -1.2 TD 0 Tc 0.0568 Tw (and Lampe, 1995\) and for the )Tj /F3 1 Tf 9 0 1.913 9 430.21 715.875 Tm 0 Tw (P )Tj /F1 1 Tf 9 0 0 9 439.21 715.875 Tm 0.0568 Tw (element \(Daniels )Tj /F3 1 Tf 9 0 1.913 9 510.31 715.875 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 530.29 715.875 Tm 0 Tw (,)Tj -24.9133 -1.2 TD -0.0017 Tc -0.0694 Tw (1990b; Loreto )Tj /F3 1 Tf 9 0 1.913 9 362.65 705.0751 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 381.43 705.0751 Tm (, 2001\). Inference of horizontal transfer)Tj -8.3733 -1.2 TD 0 Tc 0.0293 Tw (that rely on this type of distortion may be complicated by)Tj T* 0.0711 Tw (analyses that fail to consider variable rates of sequence)Tj T* -0.0033 Tc -0.0694 Tw [(change that have been shown for some )13.9(TE lineages \(Malik)]TJ /F3 1 Tf 9 0 1.913 9 306.07 661.875 Tm 0 Tc -0.0018 Tw (et al.)Tj /F1 1 Tf 9 0 0 9 325.57 661.875 Tm (, 1999\).)Tj -0.28 -1.2 TD 0.0259 Tw (A second method, also providing strong evidence, is)Tj -1.8867 -1.2 TD 0.0311 Tc 0.1389 Tw [(the detection of topological dif)13.8(ferences between the)]TJ T* 0.0119 Tc [(phylogenies of )15(TE and host species. Major disparities)]TJ T* 0.0148 Tc [(between the tree topology of )19.8(TE and host have been)]TJ T* 0 Tc -0.0661 Tw (detected in some instances, such as for )Tj /F3 1 Tf 9 0 1.913 9 462.43 607.875 Tm 0 Tw (P )Tj /F1 1 Tf 9 0 0 9 470.41 607.875 Tm -0.0661 Tw (elements \(Clark)Tj /F3 1 Tf 9 0 1.913 9 306.07 597.075 Tm -0.0154 Tw (et al.)Tj /F1 1 Tf 9 0 0 9 325.39 597.075 Tm (, 1994; Clark and Kidwell, 1997; Haring )Tj /F3 1 Tf 9 0 1.913 9 483.07 597.075 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 502.39 597.075 Tm (, 2000\),)Tj -21.8133 -1.2 TD -0.0021 Tc 0 Tw (for )Tj /F3 1 Tf 9 0 1.913 9 318.37 586.275 Tm (mariner )Tj /F1 1 Tf 9 0 0 9 350.59 586.275 Tm -0.0695 Tw (elements \(Robertson and MacLeod, 1993\) and)Tj -4.9467 -1.2 TD 0 Tc 0 Tw (for )Tj /F3 1 Tf 9 0 1.913 9 319.45 575.475 Tm (gypsy)Tj /F1 1 Tf 9 0 0 9 343.03 575.475 Tm ( )Tj 0.3239 0 TD [(\(T)114.6(erzian )]TJ /F3 1 Tf 9 0 1.913 9 380.83 575.475 Tm 0.0459 Tw (et al.)Tj /F1 1 Tf 9 0 0 9 400.75 575.475 Tm [(, 2000\). )20.8(There are, nevertheless,)]TJ -10.52 -1.2 TD -0.0048 Tc -0.0694 Tw [(potential problems with relying exclusively on this measure)]TJ T* 0.0424 Tc 0.1389 Tw [(to infer horizontal transfer)55.2(. )19.7(The topology of the )15.9(TE)]TJ T* 0 Tc 0.0572 Tw (phylogeny may be obscured by the presence of multiple)Tj T* 0.0173 Tc 0.1389 Tw (TE lineages within the genome of some species. For)Tj T* 0 Tc 0.045 Tw (example, there may be as many as nine distinct )Tj /F3 1 Tf 9 0 1.913 9 502.33 521.475 Tm 0 Tw (mariner)Tj /F1 1 Tf 9 0 0 9 306.07 510.675 Tm 0.0035 Tc 0.1389 Tw (lineages within the genomes of some species, each in)Tj T* 0 Tc -0.0308 Tw (essence representing paralogous sequences with distinct)Tj T* -0.0455 Tw (evolutionary histories \(Lampe )Tj /F3 1 Tf 9 0 1.913 9 424.93 489.075 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 444.01 489.075 Tm (, 2001\). Because most)Tj -15.3267 -1.2 TD -0.067 Tw [(phylogenetic studies of )15.7(TEs are based on characterization)]TJ T* 0.0213 Tc 0.1389 Tw (of PCR-amplified products, it is often not possible to)Tj T* 0.0222 Tc (determine if phylogenetic incongruence is a result of)Tj T* 0.0177 Tc (comparison of paralogous sequences or truly reflects)Tj T* 0 Tc 0.001 Tw [(horizontal transfer)57.4(.)]TJ 1.8867 -1.2 TD 0.1062 Tw (A third method of inferring horizontal transfer is the)Tj -1.8867 -1.2 TD -0.0026 Tc -0.0694 Tw [(so-called patchy)37.9( distribution of a )17.4(TE family among closely)]TJ T* 0 Tc 0.0653 Tw [(related taxa. )18.4(This term refers to the presence of a )18.9(TE in)]TJ T* 0.0383 Tw (one lineage and its absence in a sister lineage, resulting)Tj T* 0.0397 Tc 0.1389 Tw [(in the absence of one or more branches in the )19.9(TE)]TJ T* 0 Tc 0.1182 Tw [(phylogeny)78(. )14.2(This inference relies on the assumption that)]TJ T* 0.0588 Tw [(the lineage possessing the )13.5(TE has acquired it through a)]TJ T* 0.0142 Tc 0.1389 Tw (horizontal transfer event that did not involve its sister)Tj T* 0 Tc -0.054 Tw (lineage. By itself, this kind of evidence provides only weak)Tj T* -0.0021 Tw [(support for horizontal transfer since it is possible for a )19.8(TE)]TJ T* 0.0294 Tw (to be lost from the genome through population dynamics)Tj T* -0.0653 Tw [(or ecological forces that are dif)17.2(ficult to reconstruct \(Kaplan)]TJ /F3 1 Tf 9 0 1.913 9 306.07 294.675 Tm -0.0416 Tw (et al.)Tj /F1 1 Tf 9 0 0 9 325.21 294.675 Tm (, 1985; Lohe )Tj /F3 1 Tf 9 0 1.913 9 376.63 294.675 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 395.77 294.675 Tm [(, 1995\). )19.2(This situation is analogous)]TJ -9.9667 -1.2 TD 0.002 Tw (to the assortment of an ancestral polymorphism that may)Tj T* 0.0002 Tw (lead to the loss of a particular allele from a gene pool.)Tj 1.8867 -1.2 TD 0.0578 Tw (For those transposable elements for which the case)Tj -1.8867 -1.2 TD -0.0058 Tc -0.0694 Tw (is the strongest, horizontal transfer is confirmed by all three)Tj T* 0.0237 Tc 0.1389 Tw (methods; this is the case, for example, of numerous)Tj T* 0 Tc 0.0112 Tw [(instances of horizontal transfer involving the Class II )19.6(TEs)]TJ /F3 1 Tf 9 0 1.913 9 306.07 219.075 Tm -0.0403 Tc 0 Tw (P )Tj /F1 1 Tf 9 0 0 9 313.51 219.075 Tm -0.0042 Tc (and )Tj /F3 1 Tf 9 0 1.913 9 330.25 219.075 Tm (mariner)Tj /F1 1 Tf 9 0 0 9 360.49 219.075 Tm -0.0695 Tw [(. )18.1(The situation for horizontal transfer of some)]TJ -6.0467 -1.2 TD 0 Tc 0.0015 Tw (other transposable elements is not as strong as for those)Tj T* 0.0216 Tc 0.1389 Tw (two families, often resting on one or two methods of)Tj T* 0 Tc -0.0216 Tw [(detecting the transfer)57.5(. While horizontal transfer remains a)]TJ T* 0.0025 Tw (viable hypothesis, careful analysis may reveal alternative)Tj T* 0.0112 Tc 0.139 Tw [(explanations for inconsistencies in the phylogeny of a)]TJ T* 0.0085 Tc 0.1389 Tw (transposable element relative to that of the hosts. For)Tj T* 0.0197 Tc 0.139 Tw [(example, re-analysis of the data for several non-L)73.8(TR)]TJ T* 0 Tc 0.0097 Tw (retrotransposable elements led to the conclusion that the)Tj T* 0.0415 Tw [(evidence for horizontal transfer)52.6(, which had been inferred)]TJ T* 0.0017 Tw (strictly on the basis of phylogenetic incongruence, was in)Tj T* -0.002 Tc -0.0694 Tw (fact not as strong as originally reported \(Malik )Tj /F3 1 Tf 9 0 1.913 9 484.27 100.275 Tm -0.0695 Tw (et al.)Tj /F1 1 Tf 9 0 0 9 503.05 100.275 Tm -0.0694 Tw (, 1999\).)Tj ET endstream endobj 4 0 obj << /Type /Page /Parent 93 0 R /Resources 5 0 R /Contents 6 0 R /Thumb 60 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 5 0 obj << /ProcSet [ /PDF /Text ] /Font << /F1 114 0 R /F2 113 0 R /F3 128 0 R >> /ExtGState << /GS1 139 0 R /GS2 138 0 R >> /ColorSpace << /Cs8 112 0 R >> >> endobj 6 0 obj << /Length 21580 >> stream BT /F1 1 Tf 9 0 0 9 342.51 780.5551 Tm 0 0 0 1 k /GS2 gs 0 Tc -0.0155 Tw [(Horizontal Transfer of Transposable Elements 3)]TJ /F2 1 Tf 37.9351 29.4096 -29.4096 37.9351 42.9423 542.4378 Tm 2 Tr 0 0 0 0.45 K 0 J 0 j 0.576 w 10 M []0 d /Cs8 cs 0 scn /GS1 gs 0.0686 Tc -0.0001 Tw (PAGE PROOFS)Tj /F1 1 Tf 9 0 0 9 62.19 748.275 Tm 0 Tr 0 0 0 1 k /GS2 gs 0.0605 Tc 0.1389 Tw (For reviews of horizontal transfer and alternative)Tj 0 -1.2 TD -0.0127 Tc -0.0694 Tw (explanations, see Cummings \(1994\) and Capy )Tj /F3 1 Tf 9 0 1.913 9 241.17 737.475 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 259.35 737.475 Tm 0 Tc 0 Tw ( )Tj 0.1959 0 TD -0.0127 Tc (\(1994\).)Tj /F2 1 Tf -22.1026 -2.4 TD -0.0001 Tc -0.0001 Tw [(Horizontal T)57.7(ransfer Is Widespread)]TJ /F1 1 Tf T* -0.0058 Tc -0.0695 Tw (Within the past decade, there have been numerous reports)Tj 0 -1.2 TD 0.0165 Tc 0.1389 Tw (of horizontal transfer involving transposable elements)Tj T* 0 Tc -0.0231 Tw (\(Kidwell, 1993; Clark )Tj /F3 1 Tf 9 0 1.913 9 146.61 672.675 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 165.87 672.675 Tm (, 2002; Robertson )Tj /F3 1 Tf 9 0 1.913 9 239.37 672.675 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 258.63 672.675 Tm (, 2002\).)Tj -21.8267 -1.2 TD 0.1292 Tw (These and more recent examples of horizontal transfer)Tj T* 0.0835 Tw [(are summarized in )19.3(T)111(able 1. )53.7(Although not intended to be)]TJ T* -0.0068 Tc -0.0694 Tw (exhaustive, the listing is informative in three respects. First,)Tj T* 0 Tc -0.0331 Tw (it shows that horizontal transfer has been documented for)Tj T* -0.0072 Tc -0.0695 Tw [(all types of )15.9(TEs. Second, it illustrates that such events have)]TJ T* 0.0075 Tc 0.1389 Tw [(been reported with increasing frequency)73.5(. )49.9(And finally)74.2(, it)]TJ T* 0 Tc 0.1238 Tw (reflects the skew that is observed in the literature for a)Tj T* -0.0379 Tw (preponderance of cases of horizontal transfer that involve)Tj T* 0.0002 Tw [(Class II )19.1(TEs.)]TJ /F3 1 Tf 9 0 1.913 9 62.19 553.875 Tm 0.0112 Tc 0.1389 Tw (Lateral movers )Tj /F1 1 Tf 9 0 0 9 128.25 553.875 Tm (par excellence)Tj /F3 1 Tf 9 0 1.913 9 188.97 553.875 Tm (: the )Tj /F1 1 Tf 9 0 0 9 212.07 553.875 Tm 0 Tc 0 Tw (P)Tj /F3 1 Tf 9 0 1.913 9 218.13 553.875 Tm ( )Tj 0.4281 0 TD 0.0112 Tc 0.1389 Tw (and the )Tj /F1 1 Tf 9 0 0 9 257.85 553.875 Tm 0 Tw (mariner)Tj /F3 1 Tf 9 0 1.913 9 62.19 543.075 Tm -0.0001 Tc (families)Tj /F1 1 Tf 9 0 0 9 62.19 532.275 Tm -0.111 Tc (To)Tj 1.056 0 TD ( )Tj 0.2659 0 TD 0 Tc -0.0121 Tw (date, the strongest cases of horizontal transfer involve)Tj -1.3219 -1.2 TD -0.0088 Tw [(the Class II )20.4(TEs )]TJ /F3 1 Tf 9 0 1.913 9 127.77 521.475 Tm 0 Tw (mariner)Tj /F1 1 Tf 9 0 0 9 158.25 521.475 Tm ( )Tj 0.2692 0 TD -0.0088 Tw (and the )Tj /F3 1 Tf 9 0 1.913 9 193.05 521.475 Tm -0.0403 Tc 0 Tw (P )Tj /F1 1 Tf 9 0 0 9 201.15 521.475 Tm 0 Tc -0.0088 Tw (element. In addition, it)Tj -15.44 -1.2 TD 0.1374 Tw (seems that horizontal transfer within these two families)Tj T* 0.0008 Tc 0.1389 Tw (occurs with relatively high frequency in an evolutionary)Tj T* 0 Tc 0.0922 Tw (timescale, and this mode of transmission appears to be)Tj T* -0.0543 Tw (an integral component of the life cycle of both )Tj /F3 1 Tf 9 0 1.913 9 241.41 478.275 Tm 0 Tw (mariner)Tj /F1 1 Tf 9 0 0 9 271.89 478.275 Tm ( )Tj 0.2237 0 TD (and)Tj /F3 1 Tf 9 0 1.913 9 62.19 467.475 Tm (P )Tj /F1 1 Tf 9 0 0 9 71.37 467.475 Tm 0.0694 Tw (elements \(Kidwell, 1994; Lohe )Tj /F3 1 Tf 9 0 1.913 9 196.89 467.475 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 217.05 467.475 Tm (, 1995; Pinsker )Tj /F3 1 Tf 9 0 1.913 9 281.43 467.475 Tm 0 Tw (et)Tj -24.1049 -1.2 TD (al.)Tj /F1 1 Tf 9 0 0 9 71.67 456.675 Tm -0.0028 Tw (, 2001\).)Tj 0.8333 -1.2 TD 0.0695 Tc 0 Tw (The )Tj /F3 1 Tf 9 0 1.913 9 101.79 445.875 Tm (P )Tj /F1 1 Tf 9 0 0 9 113.67 445.875 Tm 0.2329 Tw (element family was discovered in )Tj /F3 1 Tf 9 0 1.913 9 279.27 445.875 Tm 0.0694 Tc 0 Tw (D.)Tj -23.8649 -1.2 TD 0 Tc (melanogaster)Tj /F1 1 Tf 9 0 0 9 116.73 435.075 Tm ( )Tj 0.2401 0 TD -0.0379 Tw (where it is responsible for the phenomenon)Tj -6.3001 -1.2 TD -0.003 Tc -0.0695 Tw (of hybrid dysgenesis \(Kidwell )Tj /F3 1 Tf 9 0 1.913 9 177.45 424.275 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 196.17 424.275 Tm [(, 1977\). )22.8(The )]TJ /F3 1 Tf 9 0 1.913 9 244.77 424.275 Tm 0 Tc 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 250.77 424.275 Tm ( )Tj 0.2055 0 TD -0.003 Tc (elements)Tj -21.1588 -1.2 TD 0.0129 Tc 0.1389 Tw [(from this species, termed canonical, have a complete)]TJ T* 0.0013 Tc (structure and are capable of transposition. Subsequent)Tj T* 0.0219 Tc 0.139 Tw (studies have revealed canonical )Tj /F3 1 Tf 9 0 1.913 9 204.09 391.875 Tm 0 Tw (P )Tj /F1 1 Tf 9 0 0 9 214.23 391.875 Tm 0.139 Tw (elements in other)Tj -16.8933 -1.2 TD -0.0038 Tc -0.0695 Tw [(species of )]TJ /F3 1 Tf 9 0 1.913 9 103.59 381.075 Tm 0 Tw (Drosophila)Tj /F1 1 Tf 9 0 0 9 146.25 381.075 Tm 0 Tc ( )Tj 0.2047 0 TD -0.0038 Tc -0.0695 Tw (as well \(Clark )Tj /F3 1 Tf 9 0 1.913 9 202.17 381.075 Tm -0.0694 Tw [(et al.)]TJ /F1 1 Tf 9 0 0 9 220.89 381.075 Tm -0.0695 Tw [(, 1995\). )15.4(T)113.9(ogether)50.8(,)]TJ -17.6333 -1.2 TD -0.0007 Tc (these canonical )Tj /F3 1 Tf 9 0 1.913 9 125.91 370.275 Tm 0 Tc 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 131.91 370.275 Tm ( )Tj 0.2078 0 TD -0.0007 Tc -0.0695 Tw (elements comprise a subfamily in which)Tj -7.9545 -1.2 TD 0 Tc 0.0525 Tw [(individual elements dif)15.4(fer by less than 10% in nucleotide)]TJ T* -0.0058 Tc -0.087 Tw (sequence. The )Tj /F3 1 Tf 9 0 1.913 9 122.07 348.675 Tm -0.0403 Tc 0 Tw (P )Tj /F1 1 Tf 9 0 0 9 129.57 348.675 Tm -0.0058 Tc -0.0695 Tw (family contains several other subfamilies,)Tj -7.4867 -1.2 TD 0 Tc 0.008 Tw [(a few of which, namely the O-, M- and )17.2(T)57.7(-type, have been)]TJ T* -0.0028 Tw (well characterized \(Pinsker )Tj /F3 1 Tf 9 0 1.913 9 172.17 327.075 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 191.67 327.075 Tm [(, 2001\). )23.5(The canonical )]TJ /F3 1 Tf 9 0 1.913 9 282.93 327.075 Tm 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 62.19 316.275 Tm -0.0539 Tw (element of )Tj /F3 1 Tf 9 0 1.913 9 105.75 316.275 Tm (D. melanogaster)Tj /F1 1 Tf 9 0 0 9 171.27 316.275 Tm 0 Tw ( )Tj 0.2241 0 TD -0.0539 Tw (and the consensus sequence)Tj -12.3441 -1.2 TD 0.1316 Tw (of canonical )Tj /F3 1 Tf 9 0 1.913 9 115.11 305.475 Tm -0.0403 Tc 0 Tw (P )Tj /F1 1 Tf 9 0 0 9 124.47 305.475 Tm 0 Tc 0.1316 Tw (elements from )Tj /F3 1 Tf 9 0 1.913 9 186.33 305.475 Tm (D. willistoni)Tj /F1 1 Tf 9 0 0 9 232.53 305.475 Tm 0 Tw ( )Tj 0.4096 0 TD 0.1316 Tw [(dif)18.9(fer by less)]TJ -19.3362 -1.2 TD 0.0364 Tw (than 0.1% at the nucleotide level, in spite of the fact that)Tj T* -0.0139 Tc -0.0695 Tw (these two species diverged from one another approximately)Tj T* 0 Tc -0.0119 Tw (40 million years ago \(Daniels )Tj /F3 1 Tf 9 0 1.913 9 179.67 273.075 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 199.11 273.075 Tm (, 1990b\). Furthermore,)Tj -15.2133 -1.2 TD 0.0624 Tc 0.1389 Tw (the phylogeny of canonical )Tj /F3 1 Tf 9 0 1.913 9 191.43 262.275 Tm 0 Tw (P )Tj /F1 1 Tf 9 0 0 9 202.29 262.275 Tm 0.1389 Tw (elements is clearly)Tj -15.5667 -1.2 TD -0.0059 Tc -0.0695 Tw (incongruent with that of the species in which they are found)Tj T* 0.0434 Tc 0 Tw (\(Clark )Tj /F3 1 Tf 9 0 1.913 9 92.67 240.675 Tm 0.1389 Tw (et al.)Tj /F1 1 Tf 9 0 0 9 115.77 240.675 Tm (, 1994\), and canonical )Tj /F3 1 Tf 9 0 1.913 9 220.83 240.675 Tm 0 Tw (P )Tj /F1 1 Tf 9 0 0 9 231.39 240.675 Tm 0.1389 Tw (elements are)Tj -18.8 -1.2 TD 0 Tc 0.0575 Tw (completely absent from the genomes of those flies most)Tj T* -0.0044 Tw (closely related to )Tj /F3 1 Tf 9 0 1.913 9 132.09 219.075 Tm (D. melanogaster)Tj /F1 1 Tf 9 0 0 9 198.09 219.075 Tm -0.0006 Tc -0.0038 Tw ( \(Clark )Tj /F3 1 Tf 9 0 1.913 9 227.07 219.075 Tm 0 Tc -0.0044 Tw (et al.)Tj /F1 1 Tf 9 0 0 9 246.51 219.075 Tm [(, 1998\). )53.6(All)]TJ -20.48 -1.2 TD 0.0878 Tw (these pieces of evidence contribute to make this one of)Tj T* 0.0043 Tc 0.1389 Tw [(the strongest cases of horizontal transfer \(Figure 1\). )55(A)]TJ T* 0.0406 Tc (second example in which horizontal transfer of the)Tj T* 0.0158 Tc 0 Tw (canonical )Tj /F3 1 Tf 9 0 1.913 9 105.39 175.875 Tm (P )Tj /F1 1 Tf 9 0 0 9 115.47 175.875 Tm 0.1389 Tw (element has been supported by all three)Tj -5.92 -1.2 TD 0.027 Tc (detection methods was reported recently involving a)Tj T* 0.0354 Tc (member of the )Tj /F3 1 Tf 9 0 1.913 9 130.95 154.275 Tm 0 Tw (willistoni)Tj /F1 1 Tf 9 0 0 9 167.61 154.275 Tm 0 Tc ( )Tj 0.4523 0 TD 0.0354 Tc 0.1389 Tw (species group \(possibly )Tj /F3 1 Tf 9 0 1.913 9 279.63 154.275 Tm 0 Tw (D.)Tj -23.9049 -1.2 TD 0.0695 Tc (nebulosa)Tj /F1 1 Tf 9 0 0 9 103.77 143.475 Tm 0.41 Tw (\) and a distantly related species, )Tj /F3 1 Tf 9 0 1.913 9 279.33 143.475 Tm 0.0694 Tc 0 Tw (D.)Tj -23.8716 -1.2 TD 0 Tc (mediopunctata)Tj /F1 1 Tf 9 0 0 9 121.23 132.675 Tm ( )Tj 0.2726 0 TD (\(Loreto )Tj /F3 1 Tf 9 0 1.913 9 154.65 132.675 Tm -0.0054 Tw (et al.)Tj /F1 1 Tf 9 0 0 9 174.09 132.675 Tm (, 2001; Figure 1\). In addition,)Tj -12.4333 -1.2 TD 0.1289 Tw (careful analysis of the molecular sequence evolution of)Tj T* 0.0296 Tw (the canonical )Tj /F3 1 Tf 9 0 1.913 9 118.23 111.075 Tm 0 Tw (P )Tj /F1 1 Tf 9 0 0 9 127.05 111.075 Tm 0.0296 Tw (element isolated from several species of)Tj -7.2067 -1.2 TD 0.0081 Tc 0 Tw (the )Tj /F3 1 Tf 9 0 1.913 9 78.75 100.275 Tm (willistoni)Tj /F1 1 Tf 9 0 0 9 113.01 100.275 Tm 0 Tc ( )Tj 0.425 0 TD 0.0081 Tc (and )Tj /F3 1 Tf 9 0 1.913 9 135.87 100.275 Tm (saltans)Tj /F1 1 Tf 9 0 0 9 164.91 100.275 Tm 0 Tc ( )Tj 0.425 0 TD 0.0081 Tc 0.1389 Tw (species groups)Tj /F3 1 Tf 9 0 1.913 9 231.57 100.275 Tm 0 Tc 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 235.35 100.275 Tm 0.0081 Tc 0.1389 Tw (has revealed)Tj 8.48 23.9667 TD 0 Tc 0.0578 Tw (numerous additional instances of horizontal transfer that)Tj 0 -1.2 TD -0.0132 Tc -0.0694 Tw (occurred so recently as to escape detection by phylogenetic)Tj T* 0 Tc 0.0002 Tw (methods \(Silva and Kidwell, 2000; Figure 1\).)Tj 1.8933 -1.2 TD 0.0486 Tw (Strong evidence, corroborated by all three inference)Tj -1.8933 -1.2 TD 0.0783 Tw (methods, is also available for horizontal transfer of non-)Tj T* 0 Tw (canonical )Tj /F3 1 Tf 9 0 1.913 9 352.71 261.975 Tm (P )Tj /F1 1 Tf 9 0 0 9 361.65 261.975 Tm 0.05 Tw (elements \(Figure 1\). For example, elements)Tj -5.5533 -1.2 TD 0.0535 Tc 0.1389 Tw (of both the O- and M-type subfamilies have been)Tj T* 0 Tc -0.0423 Tw (transferred independently between the genus )Tj /F3 1 Tf 9 0 1.913 9 492.9301 240.375 Tm 0 Tw (Drosophila)Tj /F1 1 Tf 9 0 0 9 535.9501 240.375 Tm (,)Tj -24.92 -1.2 TD 0.0124 Tc 0.1389 Tw (the genus )Tj /F3 1 Tf 9 0 1.913 9 357.33 229.575 Tm 0 Tw (Scaptomyza)Tj /F1 1 Tf 9 0 0 9 407.97 229.575 Tm 0 Tc ( )Tj 0.4293 0 TD 0.0124 Tc 0.1389 Tw (and the genus )Tj /F3 1 Tf 9 0 1.913 9 476.67 229.575 Tm 0 Tw (Lordiphosa)Tj /F1 1 Tf 9 0 0 9 522.33 229.575 Tm 0.1389 Tw (, as)Tj -23.4067 -1.2 TD -0.0053 Tc -0.0695 Tw (shown by the high similarity among elements in those taxa,)Tj T* 0 Tc 0.0383 Tw [(by the discordance between )15.7(TE and host phylogeny and)]TJ T* -0.0036 Tc -0.0694 Tw (the patchy distribution of similar )Tj /F3 1 Tf 9 0 1.913 9 435.9901 197.175 Tm 0 Tw (P )Tj /F1 1 Tf 9 0 0 9 443.79 197.175 Tm -0.0694 Tw (elements among related)Tj -14.68 -1.2 TD 0 Tc 0.1037 Tw [(taxa \(Simonelig and )52.8(Anxolabhre, 1991; Hagemann )]TJ /F3 1 Tf 9 0 1.913 9 530.97 186.375 Tm 0 Tw (et)Tj -24.1116 -1.2 TD (al.)Tj /F1 1 Tf 9 0 0 9 321.21 175.575 Tm -0.0005 Tw (, 1994; Hagemann )Tj /F3 1 Tf 9 0 1.913 9 397.77 175.575 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 417.27 175.575 Tm (, 1996; Haring )Tj /F3 1 Tf 9 0 1.913 9 476.31 175.575 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 495.81 175.575 Tm (, 2000\).)Tj -18.5667 -1.2 TD 0.0106 Tc 0.1389 Tw (Like the )Tj /F3 1 Tf 9 0 1.913 9 366.09 164.775 Tm -0.027 Tc 0 Tw (P )Tj /F1 1 Tf 9 0 0 9 375.69 164.775 Tm 0.0106 Tc 0.1389 Tw [(element family)73.1(, the )]TJ /F3 1 Tf 9 0 1.913 9 458.67 164.775 Tm 0 Tw (mariner)Tj /F1 1 Tf 9 0 0 9 489.8701 164.775 Tm 0 Tc ( )Tj 0.4275 0 TD 0.0106 Tc 0.1389 Tw (family also)Tj -20.2275 -1.2 TD 0 Tc -0.0622 Tw (consists of multiple subfamilies \(Robertson and MacLeod,)Tj T* -0.0059 Tc -0.0695 Tw (1993; Robertson )Tj /F3 1 Tf 9 0 1.913 9 378.63 143.175 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 397.17 143.175 Tm [(, 2002\). However)46.7(, unlike )]TJ /F3 1 Tf 9 0 1.913 9 492.39 143.175 Tm -0.0403 Tc 0 Tw (P )Tj /F1 1 Tf 9 0 0 9 499.83 143.175 Tm -0.0059 Tc (elements,)Tj -20.9067 -1.2 TD 0 Tc 0.1291 Tw (which are prevalent mainly among drosophilid flies, the)Tj /F3 1 Tf 9 0 1.913 9 311.67 121.575 Tm 0.004 Tc 0 Tw (mariner)Tj /F1 1 Tf 9 0 0 9 342.45 121.575 Tm 0 Tc ( )Tj 0.4209 0 TD 0.004 Tc 0.1389 Tw (elements are present in multiple animal phyla,)Tj -3.8409 -1.2 TD 0 Tc -0.0194 Tw (among which are cnidarians, platyhelminthes, arthropods)Tj T* 0.0658 Tc 0.1389 Tw (\(including several insect orders\) and vertebrates)Tj 7 0 0 7 311.67 746.895 Tm 0 Tc 0 Tw (T)Tj 0.5057 0 TD [(able 1. Putative cases of horizontal transfer)53.3(.)]TJ -0.5057 -2.4 TD -0.0001 Tw [( )15.1(TE family)-7601.6(Reference)]TJ T* -0.001 Tw [(Class I: non-L)72.8(TR retrotransposons)]TJ T* 0.0009 Tw (LINE / )Tj /F3 1 Tf 7 0 1.4879 7 333.09 696.495 Tm 0 Tw (jockey)Tj /F1 1 Tf 7 0 0 7 413.73 696.495 Tm -0.0003 Tw (Mizrokhi and Mazo, 1990)Tj -14.58 -1.2 TD 0.0003 Tw [(LINE / Bov-B)-8801.1(Kordis and Gubensek, 1995)]TJ T* 0.0025 Tw (SINE / )Tj /F3 1 Tf 7 0 1.4879 7 333.87 679.6951 Tm 0 Tw (Sma)Tj /F1 1 Tf 7 0 0 7 348.27 679.6951 Tm [(I-cor)-7351.4(Hamada)]TJ /F3 1 Tf 7 0 1.4879 7 440.19 679.6951 Tm -0.0003 Tc -0.0016 Tw ( et al.)Tj /F1 1 Tf 7 0 0 7 457.29 679.6951 Tm 0 Tc -0.0019 Tw (, 1997)Tj -20.8029 -1.2 TD 0.0009 Tw (LINE / )Tj /F3 1 Tf 7 0 1.4879 7 333.09 671.295 Tm 0 Tw (Rex1)Tj /F1 1 Tf 7 0 0 7 413.73 671.295 Tm (V)Tj 0.6171 0 TD [(olf)18.9(f)]TJ /F3 1 Tf 7 0 1.4879 7 427.23 671.295 Tm -0.0002 Tc -0.0012 Tw ( et al.)Tj /F1 1 Tf 7 0 0 7 444.33 671.295 Tm 0 Tc -0.0014 Tw (, 2000)Tj -18.9514 -1.2 TD -0.0006 Tw [(LINE / Bov-B)-8801.1(Zupunski)]TJ /F3 1 Tf 7 0 1.4879 7 442.17 662.895 Tm -0.0002 Tc -0.0015 Tw ( et al.)Tj /F1 1 Tf 7 0 0 7 459.27 662.895 Tm 0 Tc -0.0017 Tw (, 2001)Tj -21.0857 -2.4 TD -0.0005 Tw [(Class I: L)69.9(TR retrotransposons)]TJ /F3 1 Tf 7 0 1.4879 7 311.67 629.295 Tm 0 Tw (T)Tj 0.54 0 TD -0.001 Tw [(y1-copia / T)96.4(a1-T)93.2(a10)]TJ /F1 1 Tf 7 0 0 7 413.73 629.295 Tm 0 Tw (Konieczny)Tj /F3 1 Tf 7 0 1.4879 7 446.07 629.295 Tm -0.0002 Tc -0.0012 Tw ( et al.)Tj /F1 1 Tf 7 0 0 7 463.17 629.295 Tm 0 Tc -0.0014 Tw (, 1991)Tj /F3 1 Tf 7 0 1.4879 7 311.67 620.895 Tm 0 Tw (T)Tj 0.54 0 TD 0.001 Tw (y1-copia / copia)Tj /F1 1 Tf 7 0 0 7 413.73 620.895 Tm 0 Tw (Jordan)Tj /F3 1 Tf 7 0 1.4879 7 435.15 620.895 Tm -0.0002 Tc -0.0015 Tw ( et al.)Tj /F1 1 Tf 7 0 0 7 452.25 620.895 Tm 0 Tc -0.0017 Tw (, 1999)Tj /F3 1 Tf 7 0 1.4879 7 311.67 612.495 Tm 0 Tw (T)Tj 0.54 0 TD -0.0018 Tw (y3-gypsy / )Tj /F1 1 Tf 7 0 0 7 349.29 612.495 Tm 0 Tw (SURL)Tj /F3 1 Tf 7 0 1.4879 7 413.73 612.495 Tm 0.0006 Tw (Gonzalez and Lessios, 1999)Tj -14.3249 -1.2 TD 0 Tw (T)Tj 0.54 0 TD 0.0008 Tw (y3-gypsy / gypsy)Tj /F1 1 Tf 7 0 0 7 413.73 604.095 Tm 0 Tw (T)Tj 0.5057 0 TD (erzian)Tj /F3 1 Tf 7 0 1.4879 7 436.29 604.095 Tm -0.0003 Tc -0.002 Tw ( et al.)Tj /F1 1 Tf 7 0 0 7 453.39 604.095 Tm 0 Tc -0.0023 Tw (, 2000)Tj /F3 1 Tf 7 0 1.4879 7 311.67 595.695 Tm 0 Tw (T)Tj 0.54 0 TD 0.0008 Tw (y3-gypsy / gypsy)Tj /F1 1 Tf 7 0 0 7 413.73 595.695 Tm 0 Tw (V)Tj 0.5914 0 TD (azquez-Manrique)Tj /F3 1 Tf 7 0 1.4879 7 471.9901 595.695 Tm -0.0001 Tc -0.0008 Tw ( et al.)Tj /F1 1 Tf 7 0 0 7 489.09 595.695 Tm 0 Tc -0.0009 Tw (, 2000)Tj -25.3457 -2.4 TD 0.0017 Tw (Class II)Tj /F3 1 Tf 7 0 1.4879 7 311.67 562.095 Tm -0.0013 Tw [(hT)69.9(A)41.3( / hobo)]TJ /F1 1 Tf 7 0 0 7 413.73 562.095 Tm 0 Tw (Daniels)Tj /F3 1 Tf 7 0 1.4879 7 437.07 562.095 Tm 0.0002 Tw ( et al.)Tj /F1 1 Tf 7 0 0 7 454.17 562.095 Tm (, 1990a, Simmons, 1992)Tj /F3 1 Tf 7 0 1.4879 7 311.67 553.695 Tm 0 Tw [(hT)69.9(A)41.3( / hobo-Ac-T)84.9(am3)]TJ /F1 1 Tf 7 0 0 7 413.73 553.695 Tm (Calvi)Tj /F3 1 Tf 7 0 1.4879 7 429.27 553.695 Tm -0.0003 Tc -0.0016 Tw ( et al.)Tj /F1 1 Tf 7 0 0 7 446.37 553.695 Tm 0 Tc -0.0019 Tw (, 1991)Tj /F3 1 Tf 7 0 1.4879 7 311.67 545.295 Tm -0.0015 Tw [(hT)69.9(A)41.3( / T)87.7(ol2)]TJ /F1 1 Tf 7 0 0 7 413.73 545.295 Tm 0 Tw (Koga)Tj /F3 1 Tf 7 0 1.4879 7 430.11 545.295 Tm -0.0002 Tc -0.0013 Tw ( et al.)Tj /F1 1 Tf 7 0 0 7 447.21 545.295 Tm 0 Tc (, 2000)Tj /F3 1 Tf 7 0 1.4879 7 311.67 528.495 Tm -0.0016 Tw [(mariner)11.9(-T)95.4(c1 / mariner)]TJ /F1 1 Tf 7 0 0 7 413.73 528.495 Tm 0.0012 Tw (Maruyama and Hartl, 1991)Tj /F3 1 Tf 7 0 1.4879 7 311.67 520.095 Tm -0.0016 Tw [(mariner)11.9(-T)95.4(c1 / mariner)]TJ /F1 1 Tf 7 0 0 7 413.73 520.095 Tm 0 Tw (Lidholm)Tj /F3 1 Tf 7 0 1.4879 7 438.27 520.095 Tm -0.0003 Tc -0.0019 Tw ( et al.)Tj /F1 1 Tf 7 0 0 7 455.37 520.095 Tm 0 Tc -0.0022 Tw (, 1991)Tj /F3 1 Tf 7 0 1.4879 7 311.67 511.695 Tm -0.0016 Tw [(mariner)11.9(-T)95.4(c1 / mariner)]TJ /F1 1 Tf 7 0 0 7 413.73 511.695 Tm 0 Tw (Lohe)Tj /F3 1 Tf 7 0 1.4879 7 429.27 511.695 Tm -0.0004 Tc -0.0022 Tw ( et al.)Tj /F1 1 Tf 7 0 0 7 446.37 511.695 Tm 0 Tc -0.0026 Tw (, 1995)Tj /F3 1 Tf 7 0 1.4879 7 311.67 503.295 Tm -0.0016 Tw [(mariner)11.9(-T)95.4(c1 / mariner)]TJ /F1 1 Tf 7 0 0 7 413.73 503.295 Tm 0.0009 Tw (Robertson and Lampe, 1995)Tj /F3 1 Tf 7 0 1.4879 7 311.67 494.895 Tm -0.0016 Tw [(mariner)11.9(-T)95.4(c1 / mariner)]TJ /F1 1 Tf 7 0 0 7 413.73 494.895 Tm 0.0011 Tw (Smit and Riggs, 1996)Tj /F3 1 Tf 7 0 1.4879 7 311.67 486.495 Tm -0.0015 Tw [(mariner)11.9(-T)95.4(c1 / T)89.5(c)0(1)]TJ /F1 1 Tf 7 0 0 7 413.73 486.495 Tm 0 Tw (Lam )Tj /F3 1 Tf 7 0 1.4879 7 429.27 486.495 Tm (et al)Tj /F1 1 Tf 7 0 0 7 442.53 486.495 Tm (., 1996)Tj /F3 1 Tf 7 0 1.4879 7 311.67 478.095 Tm -0.0015 Tw [(mariner)11.9(-T)95.4(c1 / T)89.5(c)0(1)]TJ /F1 1 Tf 7 0 0 7 413.73 478.095 Tm 0 Tw (Ivics)Tj /F3 1 Tf 7 0 1.4879 7 427.77 478.095 Tm -0.0002 Tc -0.0013 Tw ( et al.)Tj /F1 1 Tf 7 0 0 7 444.87 478.095 Tm 0 Tc -0.0015 Tw (, 1997)Tj /F3 1 Tf 7 0 1.4879 7 311.67 469.695 Tm [(mariner)11.9(-T)95.4(c1 / mariner)]TJ /F1 1 Tf 7 0 0 7 413.73 469.695 Tm 0 Tw (Brunet)Tj /F3 1 Tf 7 0 1.4879 7 434.37 469.695 Tm -0.0004 Tc -0.0023 Tw ( et al.)Tj /F1 1 Tf 7 0 0 7 451.47 469.695 Tm 0 Tc -0.0027 Tw (, 1999)Tj /F3 1 Tf 7 0 1.4879 7 311.67 461.295 Tm -0.0015 Tw [(mariner)11.9(-T)95.4(c1 / T)89.5(c)0(1)]TJ /F1 1 Tf 7 0 0 7 413.73 461.295 Tm 0.0008 Tw (Arca and Savakis, 2000)Tj /F3 1 Tf 7 0 1.4879 7 311.67 452.895 Tm -0.0016 Tw [(mariner)11.9(-T)95.4(c1 / mariner)]TJ /F1 1 Tf 7 0 0 7 413.73 452.895 Tm 0 Tw (Y)Tj 0.5829 0 TD (oshiyama)Tj /F3 1 Tf 7 0 1.4879 7 447.75 452.895 Tm -0.0001 Tc -0.0007 Tw ( et al.)Tj /F1 1 Tf 7 0 0 7 464.85 452.895 Tm 0 Tc -0.0008 Tw (, 2001)Tj /F3 1 Tf 7 0 1.4879 7 311.67 444.495 Tm -0.0016 Tw [(mariner)11.9(-T)95.4(c1 / mariner)]TJ /F1 1 Tf 7 0 0 7 413.73 444.495 Tm 0 Tw (Gomulski )Tj /F3 1 Tf 7 0 1.4879 7 444.87 444.495 Tm -0.0002 Tw (et al)Tj /F1 1 Tf 7 0 0 7 458.07 444.495 Tm (., 2001)Tj /F3 1 Tf 7 0 1.4879 7 311.67 436.095 Tm -0.0016 Tw [(mariner)11.9(-T)95.4(c1 / mariner)]TJ /F1 1 Tf 7 0 0 7 413.73 436.095 Tm 0 Tw (Robertson)Tj /F3 1 Tf 7 0 1.4879 7 446.07 436.095 Tm -0.0002 Tc -0.0012 Tw ( et al.)Tj /F1 1 Tf 7 0 0 7 463.17 436.095 Tm 0 Tc -0.0014 Tw (, 2002)Tj /F3 1 Tf 7 0 1.4879 7 311.67 427.695 Tm 0.0017 Tw [(mariner)11.9(-T)95.4(c1 / ItmD37E)]TJ /F1 1 Tf 7 0 0 7 413.73 427.695 Tm 0.0003 Tw [(H. Shao and Z. )19.6(T)28.1(u)0( \(unpublished results\))]TJ /F3 1 Tf 7 0 1.4879 7 311.67 410.895 Tm 0 Tw (P)Tj /F1 1 Tf 7 0 0 7 316.35 410.895 Tm -0.0058 Tc -0.0695 Tw (, canonical)Tj 13.9114 0 TD 0 Tc (Daniels)Tj /F3 1 Tf 7 0 1.4879 7 437.07 410.895 Tm -0.0001 Tc -0.0009 Tw ( et al.)Tj /F1 1 Tf 7 0 0 7 454.17 410.895 Tm 0 Tc -0.001 Tw (, 1990b)Tj /F3 1 Tf 7 0 1.4879 7 311.67 402.495 Tm 0 Tw (P)Tj /F1 1 Tf 7 0 0 7 316.29 402.495 Tm -0.0074 Tc -0.0695 Tw (, M-type)Tj 13.92 0 TD 0 Tc (Hagemann )Tj /F3 1 Tf 7 0 1.4879 7 449.97 402.495 Tm 0.0009 Tw (et al)Tj /F1 1 Tf 7 0 0 7 463.17 402.495 Tm 0.0008 Tw (. 1992)Tj /F3 1 Tf 7 0 1.4879 7 311.67 394.095 Tm 0 Tw (P)Tj /F1 1 Tf 7 0 0 7 316.35 394.095 Tm -0.004 Tc -0.0713 Tw [(, canonical)-9263(Clark)]TJ /F3 1 Tf 7 0 1.4879 7 430.11 394.095 Tm -0.0001 Tc -0.0007 Tw ( et al.)Tj /F1 1 Tf 7 0 0 7 447.21 394.095 Tm 0 Tc -0.0008 Tw (, 1994)Tj /F3 1 Tf 7 0 1.4879 7 311.67 385.695 Tm 0 Tw (P)Tj /F1 1 Tf 7 0 0 7 316.29 385.695 Tm -0.0077 Tc -0.0694 Tw (, O-type)Tj 13.92 0 TD 0 Tc (Hagemann)Tj /F3 1 Tf 7 0 1.4879 7 447.9901 385.695 Tm -0.0002 Tc -0.0011 Tw ( et al.)Tj /F1 1 Tf 7 0 0 7 465.09 385.695 Tm 0 Tc -0.0013 Tw (, 1996)Tj /F3 1 Tf 7 0 1.4879 7 311.67 377.295 Tm 0 Tw (P)Tj /F1 1 Tf 7 0 0 7 316.35 377.295 Tm -0.0058 Tc -0.0695 Tw (, canonical)Tj 13.9114 0 TD 0 Tc 0.0004 Tw (Clark and Kidwell, 1997)Tj /F3 1 Tf 7 0 1.4879 7 311.67 368.895 Tm 0 Tw (P)Tj /F1 1 Tf 7 0 0 7 316.35 368.895 Tm -0.0427 Tw [(, M- and O-types)-6592.4(Haring)]TJ /F3 1 Tf 7 0 1.4879 7 434.37 368.895 Tm -0.0004 Tc -0.0021 Tw ( et al.)Tj /F1 1 Tf 7 0 0 7 451.47 368.895 Tm 0 Tc -0.0025 Tw (, 2000)Tj /F3 1 Tf 7 0 1.4879 7 311.67 360.495 Tm 0 Tw (P)Tj /F1 1 Tf 7 0 0 7 316.35 360.495 Tm -0.0058 Tc -0.0695 Tw (, canonical)Tj 13.9114 0 TD 0 Tc 0.001 Tw (Silva and Kidwell, 2000)Tj /F3 1 Tf 7 0 1.4879 7 311.67 352.095 Tm 0 Tw (P)Tj /F1 1 Tf 7 0 0 7 316.35 352.095 Tm -0.0058 Tc -0.0695 Tw (, canonical)Tj 13.9114 0 TD 0 Tc (Loreto)Tj /F3 1 Tf 7 0 1.4879 7 433.59 352.095 Tm -0.0002 Tc -0.0013 Tw ( et al.)Tj /F1 1 Tf 7 0 0 7 450.69 352.095 Tm 0 Tc (, 2001)Tj ET 0 0 0 1 K 0.24 w /GS1 gs 1 i 311.67 347.175 m 538.47 347.175 l 311.67 755.355 m 538.47 755.355 l 311.67 741.735 m 538.47 741.735 l 311.67 725.295 m 538.47 725.295 l S endstream endobj 7 0 obj << /Type /Page /Parent 93 0 R /Resources 8 0 R /Contents 9 0 R /Thumb 62 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 8 0 obj << /ProcSet [ /PDF /Text /ImageC /ImageI ] /Font << /F1 114 0 R /F2 113 0 R /F3 128 0 R >> /XObject << /Im1 10 0 R >> /ExtGState << /GS1 139 0 R /GS2 138 0 R >> /ColorSpace << /Cs8 112 0 R /Cs9 52 0 R >> /Properties << /MC1 12 0 R >> >> endobj 9 0 obj << /Length 10761 >> stream BT /F1 1 Tf 9 0 0 9 55.93 779.115 Tm 0 0 0 1 k /GS2 gs -0.0001 Tc -0.0003 Tw (4 Silva )Tj /F3 1 Tf 9 0 1.913 9 90.43 779.115 Tm 0 Tc (et al)Tj /F1 1 Tf 9 0 0 9 107.47 779.115 Tm 0 Tw (.)Tj /F2 1 Tf 37.9351 29.4096 -29.4096 37.9351 34.496 531.1378 Tm 2 Tr 0 0 0 0.45 K 0 J 0 j 0.576 w 10 M []0 d /Cs8 cs 0 scn /GS1 gs 0.0686 Tc -0.0001 Tw (PAGE PROOFS)Tj /F1 1 Tf 9 0 0 9 56.53 376.935 Tm 0 Tr 0 0 0 1 k /GS2 gs -0.013 Tc -0.0694 Tw [(\(Robertson and MacLeod, 1993; )52.2(Auge-Gouillou )]TJ /F3 1 Tf 9 0 1.913 9 238.93 376.935 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 257.11 376.935 Tm (, 1995;)Tj -22.2867 -1.2 TD 0.0286 Tc 0 Tw (Garcia-Fernandez )Tj /F3 1 Tf 9 0 1.913 9 137.23 366.135 Tm 0.139 Tw (et al.)Tj /F1 1 Tf 9 0 0 9 159.49 366.135 Tm (, 1995; Oosumi )Tj /F3 1 Tf 9 0 1.913 9 230.65 366.135 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 253.03 366.135 Tm 0.1389 Tw (, 1995;)Tj -21.8333 -1.2 TD 0 Tc 0.0082 Tw (Robertson, 1997\), and have also been detected in plants)Tj T* 0.1249 Tw (\(Jarvik and Lark, 1998\) and fungi \(Langin )Tj /F3 1 Tf 9 0 1.913 9 231.01 344.535 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 251.65 344.535 Tm (, 1995\).)Tj -21.68 -1.2 TD -0.0064 Tc -0.0694 Tw (This widespread distribution has been attained, to a certain)Tj T* 0 Tc 0.1211 Tw (extent, by horizontal transmission, as suggested by the)Tj T* -0.016 Tw (very high sequence similarity between elements sampled)Tj T* -0.0017 Tc -0.0694 Tw [(from distantly related hosts, the incongruence between )14.2(TE)]TJ T* 0 Tc 0.1264 Tw (and host phylogeny and the patchy distribution of each)Tj /F3 1 Tf 9 0 1.913 9 56.53 279.735 Tm 0 Tw (mariner)Tj /F1 1 Tf 9 0 0 9 87.07 279.735 Tm ( )Tj 0.2439 0 TD -0.0341 Tw (subfamily among closely related taxa \(Maruyama)Tj -3.6373 -1.2 TD -0.0681 Tw (and Hartl, 1991; Robertson and MacLeod, 1993; Brunet )Tj /F3 1 Tf 9 0 1.913 9 275.83 268.935 Tm 0 Tw (et)Tj -24.1116 -1.2 TD (al.)Tj /F1 1 Tf 9 0 0 9 66.07 258.135 Tm -0.0175 Tw (, 1994; Lohe )Tj /F3 1 Tf 9 0 1.913 9 118.15 258.135 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 137.53 258.135 Tm (, 1995; Robertson and Lampe, 1995;)Tj -9 -1.2 TD -0.0262 Tw (Smit and Riggs, 1996; Robertson, 1997; Robertson )Tj /F3 1 Tf 9 0 1.913 9 261.49 247.335 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 280.81 247.335 Tm 0 Tw (,)Tj -24.92 -1.2 TD -0.0004 Tc (2002\).)Tj /F3 1 Tf 9 0 1.913 9 56.53 214.935 Tm 0 Tc 0.0004 Tw [(Other Cases of Horizontal T)67.9(ransfer)]TJ /F1 1 Tf 9 0 0 9 56.53 204.135 Tm -0.0044 Tw (Extensive data, such as that which exists for )Tj /F3 1 Tf 9 0 1.913 9 235.33 204.135 Tm 0 Tw (mariner)Tj /F1 1 Tf 9 0 0 9 265.81 204.135 Tm -0.0011 Tc -0.0033 Tw ( and)Tj -23.2533 -1.2 TD -0.0004 Tc -0.0695 Tw (for the )Tj /F3 1 Tf 9 0 1.913 9 83.29 193.335 Tm 0 Tc 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 89.29 193.335 Tm ( )Tj 0.2081 0 TD -0.0004 Tc -0.0695 Tw [(element, are currently unavailable for other Class)]TJ -3.8481 -1.2 TD -0.0052 Tc [(II transposable elements. However)48.1(, recent studies suggest)]TJ T* -0.0018 Tc -0.0694 Tw (that horizontal transfer may be quite common among most)Tj T* -0.0069 Tc (members of this Class. For example, a recently-discovered)Tj T* 0 Tc -0.0653 Tw [(family)71(, known as )]TJ /F3 1 Tf 9 0 1.913 9 123.13 150.135 Tm 0 Tw (ITmD37E)Tj /F1 1 Tf 9 0 0 9 161.17 150.135 Tm -0.0653 Tw (, has been found in mosquitoes)Tj -11.6267 -1.2 TD 0.0695 Tc 0.1502 Tw (of the genera)Tj /F3 1 Tf 9 0 1.913 9 120.43 139.335 Tm 0 Tc 0 Tw ( )Tj 0.46 0 TD 0.0695 Tc 0.1161 Tw [(Aedes, Anopheles, )7.9(Armigeres)]TJ /F1 1 Tf 9 0 0 9 262.57 139.335 Tm 0 Tc 0 Tw ( )Tj 0.4977 0 TD 0.0695 Tc (and)Tj /F3 1 Tf 9 0 1.913 9 56.53 128.535 Tm 0 Tc (T)Tj 0.52 0 TD (oxorhynchites)Tj /F1 1 Tf 9 0 0 9 116.77 128.535 Tm ( )Tj 0.265 0 TD -0.013 Tw [(\(Shao and )24.4(T)31(u, 2001\). In spite of its recent)]TJ -6.9583 -1.2 TD -0.0035 Tw [(discovery)69.7(, cases of horizontal transfer involving elements)]TJ T* -0.032 Tw (of this family have already been detected \(H. Shao and Z.)Tj T* 0 Tw (T)Tj 0.5733 0 TD -0.0011 Tw (u, unpublished results\).)Tj 29.04 31.2 TD -0.0042 Tc -0.0695 Tw (The strongest case of horizontal transfer among Class)Tj -1.8867 -1.2 TD 0.0476 Tc 0.1389 Tw [(I elements involves the L)77.7(TR retroelement )]TJ /F3 1 Tf 9 0 1.913 9 497.05 366.135 Tm 0 Tw (copia)Tj /F1 1 Tf 9 0 0 9 520.69 366.135 Tm 0 Tc ( )Tj 0.4645 0 TD 0.0476 Tc (of)Tj /F3 1 Tf 9 0 1.913 9 306.07 355.335 Tm 0.0247 Tc (Drosophila)Tj /F1 1 Tf 9 0 0 9 351.31 355.335 Tm 0 Tc ( )Tj 0.4417 0 TD 0.0247 Tc (\(Jordan )Tj /F3 1 Tf 9 0 1.913 9 391.33 355.335 Tm 0.139 Tw (et al.)Tj /F1 1 Tf 9 0 0 9 413.41 355.335 Tm [(, 1999\). In this study)71.7(, )]TJ /F3 1 Tf 9 0 1.913 9 510.43 355.335 Tm 0 Tw (copia)Tj /F1 1 Tf 9 0 0 9 306.07 344.535 Tm -0.0114 Tc -0.0695 Tw (elements from )Tj /F3 1 Tf 9 0 1.913 9 362.89 344.535 Tm (D. melanogaster)Tj /F1 1 Tf 9 0 0 9 426.73 344.535 Tm 0 Tc 0 Tw ( )Tj 0.1971 0 TD -0.0114 Tc (and )Tj /F3 1 Tf 9 0 1.913 9 445.03 344.535 Tm -0.0695 Tw (D. willistoni )Tj /F1 1 Tf 9 0 0 9 489.79 344.535 Tm (were found)Tj -20.4133 -1.2 TD 0 Tc -0.0599 Tw (to be more than 99% identical in sequence, a much higher)Tj T* 0.0029 Tc 0.1389 Tw (level of sequence conservation than observed for non-)Tj T* 0 Tc -0.0602 Tw (mobile nuclear genes. It is interesting that these same two)Tj T* 0.1314 Tw (species were also involved in the first reported case of)Tj T* -0.0051 Tw (horizontal transfer of the canonical )Tj /F3 1 Tf 9 0 1.913 9 445.93 290.535 Tm 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 451.93 290.535 Tm ( )Tj 0.2729 0 TD -0.0051 Tw (element, which was)Tj -16.4796 -1.2 TD -0.0047 Tw (described above. In the )Tj /F3 1 Tf 9 0 1.913 9 401.95 279.735 Tm 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 407.95 279.735 Tm -0.0002 Tc -0.0044 Tw ( element case, the transfer was)Tj -11.32 -1.2 TD -0.0068 Tc -0.0694 Tw (undoubtedly from )Tj /F3 1 Tf 9 0 1.913 9 375.79 268.935 Tm (D. willistoni)Tj /F1 1 Tf 9 0 0 9 419.41 268.935 Tm 0 Tc 0 Tw ( )Tj 0.2018 0 TD -0.0068 Tc (to )Tj /F3 1 Tf 9 0 1.913 9 430.39 268.935 Tm -0.0694 Tw (D. melanogaster)Tj /F1 1 Tf 9 0 0 9 494.89 268.935 Tm (, whereas)Tj -20.98 -1.2 TD 0 Tc 0 Tw (the )Tj /F3 1 Tf 9 0 1.913 9 322.27 258.135 Tm (copia)Tj /F1 1 Tf 9 0 0 9 343.75 258.135 Tm ( )Tj 0.409 0 TD 0.131 Tw (transfer appears to have been in the reverse)Tj -4.5957 -1.2 TD -0.0005 Tc -0.0694 Tw (direction. It is tempting to speculate that these two species)Tj T* 0 Tc -0.0538 Tw (share an ecological connection that facilitates the process)Tj T* -0.0085 Tc -0.0694 Tw [(of horizontal transfer)55.9(. Recent studies also provide evidence)]TJ T* 0.0638 Tc 0.1389 Tw (for the horizontal transfer of )Tj /F3 1 Tf 9 0 1.913 9 442.63 214.935 Tm 0 Tw (gypsy)Tj /F1 1 Tf 9 0 0 9 469.03 214.935 Tm 0.1389 Tw [(, another L)67.5(T)0(R)]TJ -18.1067 -1.2 TD 0.057 Tc (retrotransposable element originally isolated from)Tj /F3 1 Tf 9 0 1.913 9 306.07 193.335 Tm 0 Tc 0 Tw (Drosophila)Tj /F1 1 Tf 9 0 0 9 349.03 193.335 Tm ( )Tj 0.243 0 TD [(\(T)107(erzian )]TJ /F3 1 Tf 9 0 1.913 9 385.45 193.335 Tm -0.035 Tw (et al.)Tj /F1 1 Tf 9 0 0 9 404.65 193.335 Tm [(, 2000; V)73(azquez-Manrique )]TJ /F3 1 Tf 9 0 1.913 9 511.09 193.335 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 530.29 193.335 Tm 0 Tw (,)Tj -24.9133 -1.2 TD 0.0491 Tc 0.1389 Tw (2000\) and for the SURL elements of echinoderms)Tj T* 0 Tc -0.0008 Tw (\(Gonzalez and Lessios, 1999\).)Tj 1.8867 -1.2 TD 0.1167 Tw [(The evolution of non-L)73.6(TR retroelements appears to)]TJ -1.8867 -1.2 TD 0.0091 Tw (be governed largely by vertical transmission \(Malik )Tj /F3 1 Tf 9 0 1.913 9 510.73 150.135 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 530.29 150.135 Tm 0 Tw (,)Tj -24.9133 -1.2 TD 0.1227 Tw [(1999\). However)54.1(, recent reports suggest that occasional)]TJ T* 0.124 Tw [(horizontal transfer of some elements may occur)53.7(. )20(These)]TJ T* 0.1293 Tw (include the )Tj /F3 1 Tf 9 0 1.913 9 354.43 117.735 Tm 0 Tw (Sma)Tj /F1 1 Tf 9 0 0 9 372.91 117.735 Tm 0.1293 Tw (I-cor elements of whitefish \(Hamada )Tj /F3 1 Tf 9 0 1.913 9 525.31 117.735 Tm 0 Tw (et)Tj -24.1049 -1.2 TD 0.0029 Tc (al.)Tj /F1 1 Tf 9 0 0 9 315.67 106.935 Tm 0.1389 Tw (, 1997\) and the Bov-B elements, which are found in)Tj -1.0667 -1.2 TD 0 Tc -0.0002 Tw (ruminants and some squamates \(Zupunski )Tj /F3 1 Tf 9 0 1.913 9 478.63 96.135 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 498.13 96.135 Tm (, 2001\).)Tj 7 0 0 7 56.53 452.175 Tm -0.0531 Tw (Figure 1. Distribution and horizontal transfer of )Tj /F3 1 Tf 7 0 1.4879 7 199.87 452.175 Tm 0 Tw (P)Tj /F1 1 Tf 7 0 0 7 204.49 452.175 Tm ( )Tj 0.2249 0 TD -0.0531 Tw (elements within the dipteran family )Tj /F3 1 Tf 7 0 1.4879 7 313.57 452.175 Tm 0 Tw (Drosophilidae)Tj /F1 1 Tf 7 0 0 7 356.35 452.175 Tm -0.0531 Tw (. Each lineage shown represents a species group that has)Tj -42.8314 -1.2 TD -0.0245 Tw (been surveyed by either Southern blot hybridization or PCR for the presence of )Tj /F3 1 Tf 7 0 1.4879 7 301.03 443.775 Tm 0 Tw (P)Tj /F1 1 Tf 7 0 0 7 305.71 443.775 Tm ( )Tj 0.2535 0 TD -0.0245 Tw (elements \(Daniels )Tj /F3 1 Tf 7 0 1.4879 7 365.11 443.775 Tm (et al.)Tj /F1 1 Tf 7 0 0 7 380.11 443.775 Tm 0 Tw ( )Tj 0.2535 0 TD -0.0245 Tw (1990b; Harring )Tj /F3 1 Tf 7 0 1.4879 7 429.73 443.775 Tm (et al.)Tj /F1 1 Tf 7 0 0 7 444.73 443.775 Tm 0 Tw ( )Tj 0.2535 0 TD -0.0245 Tw (2000\). Dark squares denote)Tj -55.7106 -1.2 TD 0.0506 Tw (a strong )Tj /F3 1 Tf 7 0 1.4879 7 84.49 435.375 Tm 0 Tw (P)Tj /F1 1 Tf 7 0 0 7 89.17 435.375 Tm ( )Tj 0.3286 0 TD 0.0506 Tw (element signal, gray squares denote weaker signals, and open squares denote no signal. Detectable )Tj /F3 1 Tf 7 0 1.4879 7 410.05 435.375 Tm 0 Tw (P)Tj /F1 1 Tf 7 0 0 7 414.73 435.375 Tm ( )Tj 0.3286 0 TD 0.0506 Tw (elements are absent from all species)Tj -51.5 -1.2 TD 0.0026 Tw (surveyed from the )Tj /F3 1 Tf 7 0 1.4879 7 114.55 426.975 Tm 0 Tw (tripunctata)Tj /F1 1 Tf 7 0 0 7 147.25 426.975 Tm 0.0001 Tc 0.0025 Tw ( group with the exception of )Tj /F3 1 Tf 7 0 1.4879 7 234.97 426.975 Tm 0 Tc 0.0026 Tw (D. mediopunctata)Tj /F1 1 Tf 7 0 0 7 289.81 426.975 Tm ( \(dotted square\). Horizontal transfer events are identified with arrows using the)Tj -33.3257 -1.2 TD -0.063 Tw (following key: filled arrows, canonical )Tj /F3 1 Tf 7 0 1.4879 7 171.07 418.575 Tm 0 Tw (P)Tj /F1 1 Tf 7 0 0 7 175.75 418.575 Tm ( )Tj 0.215 0 TD -0.063 Tw (elements; open arrows, M-type )Tj /F3 1 Tf 7 0 1.4879 7 273.49 418.575 Tm 0 Tw (P)Tj /F1 1 Tf 7 0 0 7 278.23 418.575 Tm ( )Tj 0.215 0 TD -0.063 Tw (elements; dashed arrows, O-type )Tj /F3 1 Tf 7 0 1.4879 7 382.93 418.575 Tm 0 Tw (P)Tj /F1 1 Tf 7 0 0 7 387.67 418.575 Tm ( )Tj 0.215 0 TD -0.063 Tw (elements. Host phylogeny is based on Remsen)Tj -47.5207 -1.2 TD -0.0007 Tw (and OGrady \(2002\).)Tj ET /EmbeddedDocument /MC1 BDC q 1 i 56.53 755.475 476.28 -286.32 re W n 1 G 0.522 w /GS1 gs 51.83 760.177 486.203 -301.994 re S q 476.28 0 0 292.0673 56.53 463.4077 cm /Im1 Do Q EMC Q endstream endobj 10 0 obj << /Type /XObject /Subtype /Image /Width 912 /Height 559 /BitsPerComponent 8 /ColorSpace 52 0 R /Length 509809 >> stream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   !                   "          #          !$                 %"        !        !%"                         #!$                 !                                          $                %!$                                                                                                                                                                                                                                   endstream endobj 11 0 obj << /Length 776 >> stream SAMSON endstream endobj 12 0 obj << /MetaData 11 0 R /Title (SAMSON) /Creator (Adobe\37777777650 PageMaker\37777777650 6.5: LaserWriter 8 Z1-8.7.1) >> endobj 13 0 obj << /Type /Page /Parent 93 0 R /Resources 14 0 R /Contents 15 0 R /Thumb 64 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 14 0 obj << /ProcSet [ /PDF /Text ] /Font << /F1 114 0 R /F2 113 0 R /F3 128 0 R >> /ExtGState << /GS1 139 0 R /GS2 138 0 R >> /ColorSpace << /Cs8 112 0 R >> >> endobj 15 0 obj << /Length 15684 >> stream BT /F1 1 Tf 9 0 0 9 342.51 780.5551 Tm 0 0 0 1 k /GS2 gs 0 Tc -0.0155 Tw [(Horizontal Transfer of Transposable Elements 5)]TJ /F2 1 Tf 37.9351 29.4096 -29.4096 37.9351 42.9423 542.4378 Tm 2 Tr 0 0 0 0.45 K 0 J 0 j 0.576 w 10 M []0 d /Cs8 cs 0 scn /GS1 gs 0.0686 Tc -0.0001 Tw (PAGE PROOFS)Tj /F1 1 Tf 9 0 0 9 79.17 748.275 Tm 0 Tr 0 0 0 1 k /GS2 gs 0.052 Tc 0.1389 Tw [(Currently)70.3(, it is not known how widespread the)]TJ -1.8867 -1.2 TD 0 Tc 0.0781 Tw (phenomenon of horizontal transfer is among the Class I)Tj T* -0.0057 Tc -0.0695 Tw (TEs. While horizontal transfer remains a viable hypothesis,)Tj T* 0.0013 Tc 0.1389 Tw (careful analysis may reveal alternative explanations for)Tj T* 0.0318 Tc (inconsistencies in the distribution or phylogeny of a)Tj T* -0.0068 Tc -0.0695 Tw (transposable element. For example, re-analysis of the data)Tj T* 0 Tc -0.0509 Tw [(for several non-L)74.7(TR retrotransposable elements led to the)]TJ T* -0.0695 Tw [(conclusion that evidence for horizontal transfer)54.6(, which had)]TJ T* 0.0424 Tc 0.1389 Tw [(been inferred for a number of )13.3(TEs on the basis of)]TJ T* 0 Tc 0.078 Tw (phylogenetic incongruence, was in fact not as strong as)Tj T* 0.0459 Tc 0.1389 Tw (originally reported \(Malik )Tj /F3 1 Tf 9 0 1.913 9 177.63 640.275 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 200.91 640.275 Tm [(, 1999\). )19.9(T)56.9(wo recent)]TJ -15.4133 -1.2 TD 0.0018 Tc (investigations of retrotransposable element evolution in)Tj T* 0 Tc 0.0888 Tw [(plants discuss the dif)15.3(ficulties associated with attempting)]TJ T* 0.0299 Tw (to distinguish between horizontal transfer and alternative)Tj T* 0.0163 Tc 0.1389 Tw (explanations, especially when the transfer events are)Tj T* 0 Tc -0.0293 Tw (postulated to have occurred in the distant past \(Frissen )Tj /F3 1 Tf 9 0 1.913 9 281.43 586.275 Tm 0 Tw (et)Tj -24.1049 -1.2 TD (al.)Tj /F1 1 Tf 9 0 0 9 71.67 575.475 Tm 0.0001 Tw (, 2001; Stuart-Rogers and Flavell, 2001\).)Tj /F2 1 Tf -1.0533 -2.4 TD 0.0695 Tc 0.5777 Tw [(Initiating Horizontal T)56.2(ransfer: V)53.8(ectors )36.3(And)]TJ 0 -1.2 TD 0 Tc 0 Tw (Opportunities)Tj /F1 1 Tf 0 -2.4 TD 0.0887 Tw [(In order for a )17.9(TE to be exchanged between two cells, a)]TJ 0 -1.2 TD 0.0062 Tc 0.1389 Tw (vector of some sort is needed to mediate the physical)Tj T* 0 Tc -0.0411 Tw [(transfer of DNA)55.5( from a donor to the recipient)19.4(s germline. )52.5(A)]TJ T* 0.0387 Tw (vector of this nature belongs necessarily to a limited set.)Tj T* 0.0225 Tw (Potential vectors need to have access to the intracellular)Tj T* -0.0123 Tw (environment, or to be otherwise capable of accessing the)Tj T* 0.0275 Tc 0.139 Tw (cells without destroying them. In addition, horizontal)Tj T* 0 Tc 0.1198 Tw (transfer requires not only that the distributions of donor)Tj T* 0.0165 Tc 0.1389 Tw (and recipient overlap in a geographic sense, but it is)Tj T* 0 Tc -0.0299 Tw (probably facilitated by ecological and temporal overlap as)Tj T* -0.0001 Tc 0 Tw (well.)Tj /F3 1 Tf 9 0 1.913 9 62.19 391.875 Tm 0 Tc (V)Tj 0.6267 0 TD 0.0004 Tc (ectors)Tj /F1 1 Tf 9 0 0 9 62.19 381.075 Tm 0.0408 Tc 0.1389 Tw (Although numerous studies provide support for the)Tj 0 -1.2 TD 0 Tc 0.1052 Tw [(hypothesis of horizontal transfer)55.5(, with a few exceptions,)]TJ T* -0.013 Tc -0.0694 Tw (such as that of the canonical )Tj /F3 1 Tf 9 0 1.913 9 171.51 359.475 Tm 0 Tc 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 177.39 359.475 Tm ( )Tj 0.1956 0 TD -0.013 Tc -0.0694 Tw (element \(Houck )Tj /F3 1 Tf 9 0 1.913 9 241.71 359.475 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 259.83 359.475 Tm (, 1991\),)Tj -21.96 -1.2 TD 0 Tc 0.0015 Tw (they do not present a satisfying proposal for how transfer)Tj T* -0.0038 Tc -0.0694 Tw (may have occurred. Suitable vectors for horizontal transfer)Tj T* 0 Tc 0.1372 Tw [(in natural populations include viruses \(Miller and Miller)47.5(,)]TJ T* 0.1002 Tw (1982; Fraser )Tj /F3 1 Tf 9 0 1.913 9 117.57 316.275 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 137.97 316.275 Tm (, 1985; Jehle )Tj /F3 1 Tf 9 0 1.913 9 194.67 316.275 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 215.07 316.275 Tm (, 1995\), parasitoid)Tj -16.9867 -1.2 TD -0.003 Tc -0.0695 Tw [(wasps \(Y)91.7(oshiyama )]TJ /F3 1 Tf 9 0 1.913 9 137.67 305.475 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 156.39 305.475 Tm (, 2001\) and parasitic mites \(Houck)Tj /F3 1 Tf 9 0 1.913 9 62.19 294.675 Tm -0.0113 Tc (et al.)Tj /F1 1 Tf 9 0 0 9 80.43 294.675 Tm 0 Tc 0 Tw ( )Tj 0.1972 0 TD -0.0113 Tc -0.0695 Tw [(1991\). Recently)67.6(, intracellular parasites have also been)]TJ -2.2239 -1.2 TD 0.0593 Tc 0.1389 Tw (placed in the list of plausible vectors. Heath and)Tj T* 0.0319 Tc (collaborators \(1999\) had shown that an intracellular)Tj T* 0.015 Tc (parasite of the genus )Tj /F3 1 Tf 9 0 1.913 9 156.69 262.275 Tm 0 Tw (Wolbachia)Tj /F1 1 Tf 9 0 0 9 199.95 262.275 Tm 0 Tc ( )Tj 0.4319 0 TD 0.015 Tc 0.1389 Tw (could be transferred)Tj -15.7386 -1.2 TD 0 Tc 0.0895 Tw [(between host species. Now)53.9(, transfer of nuclear material)]TJ T* 0.0093 Tc 0 Tw (between )Tj /F3 1 Tf 9 0 1.913 9 100.65 240.675 Tm (Wolbachia)Tj /F1 1 Tf 9 0 0 9 143.37 240.675 Tm 0 Tc ( )Tj 0.4262 0 TD 0.0093 Tc 0.1389 Tw (and an insect host has also been)Tj -9.4462 -1.2 TD 0 Tc 0.1227 Tw (documented, although the mechanism for such transfer)Tj T* 0.0055 Tc 0.1389 Tw (remains elusive \(Kondo )Tj /F3 1 Tf 9 0 1.913 9 163.65 219.075 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 184.71 219.075 Tm [(, 2002\). )22.6(These promising)]TJ -13.6133 -1.2 TD 0 Tc -0.0263 Tw (hypotheses notwithstanding, it is worth noting that to date)Tj T* 0.0161 Tc 0.1389 Tw (none of these vectors has been observed to mediate)Tj T* 0 Tc 0.1148 Tw [(horizontal transfer of a )19.6(TE between two hosts, either in)]TJ T* 0.0004 Tw (natural or in laboratory populations.)Tj 1.8867 -1.2 TD -0.0674 Tw (An interesting situation exists with the Class I element)Tj /F3 1 Tf 9 0 1.913 9 62.19 154.275 Tm -0.0018 Tc 0 Tw (gypsy)Tj /F1 1 Tf 9 0 0 9 85.65 154.275 Tm -0.0695 Tw [(. )22.9(This )15.1(TE can act as an endogenous retrovirus, since)]TJ -2.6067 -1.2 TD 0 Tc 0.0175 Tw (it encodes an envelope protein and possesses infectious)Tj T* -0.0673 Tw (properties \(Kim )Tj /F3 1 Tf 9 0 1.913 9 124.47 132.675 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 143.37 132.675 Tm (, 1994\). )Tj /F3 1 Tf 9 0 1.913 9 175.17 132.675 Tm 0 Tw (Gypsy)Tj /F1 1 Tf 9 0 0 9 200.73 132.675 Tm ( )Tj 0.2107 0 TD -0.0673 Tw (can produce virus-like)Tj -15.604 -1.2 TD 0.0902 Tw (particles \(Lcher )Tj /F3 1 Tf 9 0 1.913 9 132.87 121.875 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 153.21 121.875 Tm (, 1997\) and it has been shown in)Tj -10.1133 -1.2 TD 0.0076 Tc 0.1389 Tw (experimental conditions that )Tj /F3 1 Tf 9 0 1.913 9 182.49 111.075 Tm 0 Tw (gypsy)Tj /F1 1 Tf 9 0 0 9 206.37 111.075 Tm 0 Tc ( )Tj 0.4245 0 TD 0.0076 Tc 0.1389 Tw (can be horizontally)Tj -16.4445 -1.2 TD -0.0002 Tc -0.0695 Tw (transmitted between )Tj /F3 1 Tf 9 0 1.913 9 144.45 100.275 Tm 0 Tw (Drosophila)Tj /F1 1 Tf 9 0 0 9 187.47 100.275 Tm 0 Tc ( )Tj 0.2083 0 TD -0.0002 Tc -0.0695 Tw (species \(Mejlumian )Tj /F3 1 Tf 9 0 1.913 9 267.57 100.275 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 286.47 100.275 Tm 0 Tc 0 Tw (,)Tj 2.8 72 TD -0.0059 Tc -0.0695 Tw [(2002\). )15.3(Thus, in principle, horizontal transfer of )]TJ /F3 1 Tf 9 0 1.913 9 490.11 748.275 Tm 0 Tw (gypsy)Tj /F1 1 Tf 9 0 0 9 513.33 748.275 Tm 0 Tc ( )Tj 0.2026 0 TD -0.0059 Tc (would)Tj -22.6093 -1.2 TD 0 Tc 0.0001 Tw [(not require a vector)48.7(.)]TJ /F3 1 Tf 9 0 1.913 9 311.67 715.875 Tm (Overlap Between Donor and Recipient Hosts)Tj /F1 1 Tf 9 0 0 9 311.67 705.0751 Tm -0.04 Tw (A fascinating example of horizontal transfer of an element)Tj T* 0.0881 Tw (of the )Tj /F3 1 Tf 9 0 1.913 9 338.31 694.275 Tm 0 Tw (mariner)Tj /F1 1 Tf 9 0 0 9 368.79 694.275 Tm ( )Tj 0.3661 0 TD 0.0881 Tw (family between a parasitoid wasp and its)Tj -6.7128 -1.2 TD 0.0493 Tc 0.1389 Tw (lepidopteran host provides a good example of the)Tj T* 0 Tc -0.0141 Tw (ecological overlap between donor and recipient that must)Tj T* 0.0827 Tw [(accompany horizontal transfer \(Y)86.9(oshiyama )]TJ /F3 1 Tf 9 0 1.913 9 486.9301 661.875 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 507.21 661.875 Tm (, 2001\).)Tj -21.7267 -1.2 TD 0.0297 Tw (In this case, the parasitoid possesses a )Tj /F3 1 Tf 9 0 1.913 9 473.13 651.075 Tm 0 Tw (mariner)Tj /F1 1 Tf 9 0 0 9 503.67 651.075 Tm ( )Tj 0.3077 0 TD (element)Tj -21.641 -1.2 TD -0.0115 Tc -0.0695 Tw [(with 97% sequence identity to that of its moth host, whereas)]TJ T* 0.0177 Tc 0.139 Tw (related wasps species do not possess )Tj /F3 1 Tf 9 0 1.913 9 479.19 629.475 Tm 0 Tw (mariner)Tj /F1 1 Tf 9 0 0 9 510.81 629.475 Tm 0 Tc ( )Tj 0.4347 0 TD 0.0177 Tc 0.139 Tw (at all.)Tj -22.5613 -1.2 TD -0.0111 Tc -0.0694 Tw [(However)54.2(, in spite of this close physical association between)]TJ T* 0 Tc -0.0087 Tw [(parasitoid and host, a vector)53.9(, such as a virus, may still be)]TJ T* 0.0257 Tc 0.1389 Tw [(necessary to mediate the actual transfer of )10.9(TE DNA)]TJ T* 0 Tc 0.002 Tw (between cells.)Tj 1.8933 -1.2 TD 0.0155 Tc 0.1389 Tw [(The transfer of canonical )]TJ /F3 1 Tf 9 0 1.913 9 438.87 575.475 Tm 0 Tc 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 444.9901 575.475 Tm ( )Tj 0.4324 0 TD 0.0155 Tc 0.1389 Tw (elements between )Tj /F3 1 Tf 9 0 1.913 9 529.29 575.475 Tm 0 Tw (D.)Tj -23.9249 -1.2 TD 0 Tc (willistoni)Tj /F1 1 Tf 9 0 0 9 345.21 564.675 Tm ( )Tj 0.2341 0 TD (and )Tj /F3 1 Tf 9 0 1.913 9 364.47 564.675 Tm -0.0439 Tw (D. melanogaster)Tj /F1 1 Tf 9 0 0 9 430.05 564.675 Tm 0 Tw ( )Tj 0.2341 0 TD -0.0439 Tw (illustrates the geographical)Tj -13.3874 -1.2 TD -0.0098 Tc -0.0694 Tw (overlap that is a prerequisite for horizontal transfer between)Tj T* 0.0105 Tc 0.1389 Tw (donor and recipient. )Tj /F3 1 Tf 9 0 1.913 9 399.51 543.075 Tm (D. melanogaster)Tj /F1 1 Tf 9 0 0 9 468.21 543.075 Tm 0 Tc 0 Tw ( )Tj 0.4274 0 TD 0.0105 Tc 0.1389 Tw [(is an Old W)20.6(orld)]TJ -17.8207 -1.2 TD 0 Tc -0.0061 Tw (species whose distribution has only recently expanded to)Tj T* 0.0066 Tc 0.1389 Tw [(the New W)13.5(o)0(rld, probably as a result of human activity)]TJ T* -0.0053 Tc -0.0695 Tw [(\(Kidwell, 1983; Engels, 1992\). )18.4(Thus, the horizontal transfer)]TJ T* 0 Tc 0.1311 Tw (of the canonical )Tj /F3 1 Tf 9 0 1.913 9 380.79 499.875 Tm 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 386.79 499.875 Tm ( )Tj 0.4091 0 TD 0.1311 Tw (element was only possible once the)Tj -8.7558 -1.2 TD 0.0262 Tw (distributions of )Tj /F3 1 Tf 9 0 1.913 9 372.69 489.075 Tm (D. melanogaster)Tj /F1 1 Tf 9 0 0 9 438.9301 489.075 Tm 0 Tw ( )Tj 0.3042 0 TD (and )Tj /F3 1 Tf 9 0 1.913 9 459.45 489.075 Tm 0.0262 Tw (D. willistoni)Tj /F1 1 Tf 9 0 0 9 504.69 489.075 Tm 0 Tw ( )Tj 0.3042 0 TD (partially)Tj -21.7508 -1.2 TD 0.0171 Tc 0.1389 Tw [(overlapped, an event that occurred relatively recently)]TJ T* 0 Tc 0 Tw (\(Daniels )Tj /F3 1 Tf 9 0 1.913 9 347.19 467.475 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 366.69 467.475 Tm (, 1990b\).)Tj -6.1133 -1.2 TD 0.0096 Tw (Bimont and colleagues \(1999\) extend the importance of)Tj T* -0.0127 Tc -0.0695 Tw (the overlap between donor and recipient when they suggest)Tj T* -0.0045 Tc -0.0694 Tw (that the expansion of a species range may be concomitant)Tj T* 0 Tc 0.0798 Tw [(with the genomic invasion by )13.3(TEs. )20.5(This invasion can be)]TJ T* -0.0458 Tw [(explained both by the horizontal transfer of alien )13.7(TEs from)]TJ T* 0.0435 Tw (new species with which the invading species comes into)Tj T* 0.0047 Tc 0.1389 Tw [(contact, or by the activation of long-time resident )15.1(TEs,)]TJ T* 0 Tc -0.0692 Tw [(leading to an increase in genomic copy number)49.6(. )13.5(Thus, to a)]TJ T* 0.0109 Tc 0.1389 Tw (certain extent, a newly acquired overlap of donor and)Tj T* 0 Tc 0.0435 Tw (recipient may lead to horizontal transfer by providing the)Tj T* 0.0011 Tc 0.1389 Tw [(opportunity for such an exchange. )8.4(This hypothesis has)]TJ T* 0.0524 Tc (been invoked to explain the recent invasion of )Tj /F3 1 Tf 9 0 1.913 9 528.9901 337.875 Tm 0 Tw (D.)Tj -23.8916 -1.2 TD -0.0136 Tc (melanogaster)Tj /F1 1 Tf 9 0 0 9 364.77 327.075 Tm 0 Tc ( )Tj 0.195 0 TD -0.0136 Tc (by )Tj /F3 1 Tf 9 0 1.913 9 377.55 327.075 Tm -0.147 Tc 0.0639 Tw [(P,)-133.4( I)]TJ /F1 1 Tf 9 0 0 9 388.77 327.075 Tm 0 Tc 0 Tw ( )Tj 0.195 0 TD -0.0136 Tc (and )Tj /F3 1 Tf 9 0 1.913 9 406.89 327.075 Tm (hobo)Tj /F1 1 Tf 9 0 0 9 426.45 327.075 Tm 0 Tc ( )Tj 0.195 0 TD -0.0136 Tc -0.0694 Tw (elements, and of )Tj /F3 1 Tf 9 0 1.913 9 493.29 327.075 Tm -0.0695 Tw (D. simulans)Tj /F1 1 Tf 9 0 0 9 311.67 316.275 Tm 0 Tc -0.0008 Tw (by the retrotransposon )Tj /F3 1 Tf 9 0 1.913 9 404.25 316.275 Tm 0 Tw (412)Tj /F1 1 Tf 9 0 0 9 419.25 316.275 Tm -0.0001 Tc -0.0007 Tw [( \(V)17.1(ieira )]TJ /F3 1 Tf 9 0 1.913 9 450.09 316.275 Tm 0 Tc -0.0008 Tw (et al.)Tj /F1 1 Tf 9 0 0 9 469.59 316.275 Tm (, 1999\).)Tj -15.6533 -1.2 TD -0.0122 Tw (A similar coincidence of expansion of host range and)Tj -1.8933 -1.2 TD 0.0361 Tc 0.1389 Tw [(invasion of )15.5(TEs by horizontal transfer is apparently)]TJ T* -0.0002 Tc -0.0695 Tw (occurring with the drosophilid species )Tj /F3 1 Tf 9 0 1.913 9 460.53 283.875 Tm (Zaprionus indianus)Tj /F1 1 Tf 9 0 0 9 535.9501 283.875 Tm 0 Tc 0 Tw (.)Tj -24.92 -1.2 TD -0.0479 Tw (Flies of the genus )Tj /F3 1 Tf 9 0 1.913 9 383.49 273.075 Tm 0 Tw (Zaprionus)Tj /F1 1 Tf 9 0 0 9 423.57 273.075 Tm ( )Tj 0.2301 0 TD -0.0479 Tw (are of afrotropical origin, and)Tj -12.6634 -1.2 TD -0.0052 Tw (are closely related to the genus )Tj /F3 1 Tf 9 0 1.913 9 438.9901 262.275 Tm 0 Tw (Drosophila)Tj /F1 1 Tf 9 0 0 9 482.01 262.275 Tm ( )Tj 0.2728 0 TD -0.0052 Tw (\(Remsen and)Tj -19.1994 -1.2 TD 0.0145 Tw [(OGrady)69.7(, 2002; Figure 1\). )]TJ /F3 1 Tf 9 0 1.913 9 416.07 251.475 Tm (Z. indianus)Tj /F1 1 Tf 9 0 0 9 460.23 251.475 Tm 0 Tw ( )Tj 0.2925 0 TD 0.0145 Tw (is in the process of)Tj -16.7992 -1.2 TD 0.0343 Tc 0.1389 Tw (expanding its range, having recently invaded South)Tj T* 0 Tc 0.0893 Tw (America, and is rapidly spreading throughout Brazil and)Tj T* 0.0289 Tc 0.1389 Tw [(neighboring countries \(V)9.1(ilela, 1999\). In addition, the)]TJ T* 0 Tc 0.0015 Tw (ecological niche of )Tj /F3 1 Tf 9 0 1.913 9 388.29 208.275 Tm (Z. indianus)Tj /F1 1 Tf 9 0 0 9 432.33 208.275 Tm 0.0001 Tc 0.0014 Tw ( is very similar to that of )Tj /F3 1 Tf 9 0 1.913 9 529.47 208.275 Tm 0 Tc 0 Tw (D.)Tj -23.9449 -1.2 TD (simulans)Tj /F1 1 Tf 9 0 0 9 347.19 197.475 Tm ( )Tj 0.2586 0 TD -0.0194 Tw (and these species are now often found together)Tj -4.2053 -1.2 TD -0.0006 Tc -0.0695 Tw (in Brazil \(E. L., unpublished results\). Concomitant with this)Tj T* 0 Tc -0.014 Tw (range expansion, horizontal transfer of )Tj /F3 1 Tf 9 0 1.913 9 467.13 175.875 Tm 0 Tw (gypsy)Tj /F1 1 Tf 9 0 0 9 490.65 175.875 Tm ( )Tj 0.264 0 TD (between )Tj /F3 1 Tf 9 0 1.913 9 529.47 175.875 Tm (D.)Tj -23.9449 -1.2 TD (simulans)Tj /F1 1 Tf 9 0 0 9 347.19 165.075 Tm 0.0003 Tc 0.0013 Tw ( and )Tj /F3 1 Tf 9 0 1.913 9 367.23 165.075 Tm 0 Tc 0.0016 Tw (Z. indianus )Tj /F1 1 Tf 9 0 0 9 413.79 165.075 Tm (has been described by Herdia)Tj -11.3467 -1.2 TD 0.0139 Tc 0.1389 Tw [(\(2002\), based on incongruence between )13.9(TE and host)]TJ T* -0.0132 Tc -0.0694 Tw (phylogenies. Comparison of sequence divergence of a non-)Tj T* 0 Tc -0.0617 Tw (mobile nuclear gene \(superoxide dismutase, )Tj /F3 1 Tf 9 0 1.913 9 488.01 132.675 Tm 0 Tw (Sod)Tj /F1 1 Tf 9 0 0 9 504.03 132.675 Tm -0.0617 Tw (\) and the)Tj /F3 1 Tf 9 0 1.913 9 311.67 121.875 Tm 0.0164 Tc 0 Tw (gypsy)Tj /F1 1 Tf 9 0 0 9 335.97 121.875 Tm 0 Tc ( )Tj 0.4333 0 TD 0.0164 Tc 0.1389 Tw [(sequences \(T)113.8(able 2\) in these species provides)]TJ -3.1333 -1.2 TD 0.0063 Tc (additional corroboration of the hypothesis of horizontal)Tj T* 0.0657 Tc [(transfer)49.2(. )26.3(The divergence of the )11.7(TE sequences is)]TJ ET endstream endobj 16 0 obj << /Type /Page /Parent 93 0 R /Resources 17 0 R /Contents 18 0 R /Thumb 66 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 17 0 obj << /ProcSet [ /PDF /Text ] /Font << /F1 114 0 R /F2 113 0 R /F3 128 0 R >> /ExtGState << /GS1 139 0 R /GS2 138 0 R >> /ColorSpace << /Cs8 112 0 R >> >> endobj 18 0 obj << /Length 14248 >> stream BT /F1 1 Tf 9 0 0 9 55.93 779.115 Tm 0 0 0 1 k /GS2 gs -0.0001 Tc -0.0003 Tw (6 Silva )Tj /F3 1 Tf 9 0 1.913 9 90.43 779.115 Tm 0 Tc (et al)Tj /F1 1 Tf 9 0 0 9 107.47 779.115 Tm 0 Tw (.)Tj /F2 1 Tf 37.9351 29.4096 -29.4096 37.9351 34.496 531.1378 Tm 2 Tr 0 0 0 0.45 K 0 J 0 j 0.576 w 10 M []0 d /Cs8 cs 0 scn /GS1 gs 0.0686 Tc -0.0001 Tw (PAGE PROOFS)Tj /F1 1 Tf 9 0 0 9 56.53 748.275 Tm 0 Tr 0 0 0 1 k /GS2 gs 0.0056 Tc 0.1389 Tw (considerably less than that of a host gene supposedly)Tj 0 -1.2 TD -0.0141 Tc -0.0695 Tw (evolving under purifying selection. In order to further explore)Tj T* 0 Tc 0.1016 Tw [(this possibility)69.7(, PCR was used to screen 35 Neotropical)]TJ T* 0.0224 Tw (species \(14 from the subgenus )Tj /F3 1 Tf 9 0 1.913 9 183.13 715.875 Tm 0 Tw (Sophophora)Tj /F1 1 Tf 9 0 0 9 232.15 715.875 Tm 0.0224 Tw (, 19 from the)Tj -19.5133 -1.2 TD 0 Tw (subgenus )Tj /F3 1 Tf 9 0 1.913 9 98.89 705.0751 Tm (Drosophila)Tj /F1 1 Tf 9 0 0 9 141.91 705.0751 Tm 0.0889 Tw (, and one each from the subgenus)Tj /F3 1 Tf 9 0 1.913 9 56.53 694.275 Tm 0 Tw (Dorsilopha)Tj /F1 1 Tf 9 0 0 9 99.55 694.275 Tm ( )Tj 0.391 0 TD (and )Tj /F3 1 Tf 9 0 1.913 9 121.63 694.275 Tm 0.113 Tw (Zaprionus indianus)Tj /F1 1 Tf 9 0 0 9 198.73 694.275 Tm (\) for the presence of)Tj -15.8 -1.2 TD 0.0576 Tw (elements from the )Tj /F3 1 Tf 9 0 1.913 9 132.67 683.475 Tm 0 Tw (297)Tj /F1 1 Tf 9 0 0 9 147.67 683.475 Tm (/)Tj /F3 1 Tf 9 0 1.913 9 150.13 683.475 Tm (tom)Tj /F1 1 Tf 9 0 0 9 165.13 683.475 Tm ( )Tj 0.3356 0 TD 0.0576 Tw [(group of retrotransposons. )47.8(A)]TJ -12.4023 -1.2 TD 0.0507 Tw (fragment with the expected size was amplified only from)Tj T* 0.0573 Tw (species of the )Tj /F3 1 Tf 9 0 1.913 9 116.17 661.875 Tm 0 Tw (melanogaster)Tj /F1 1 Tf 9 0 0 9 170.65 661.875 Tm ( )Tj 0.3353 0 TD 0.0573 Tw (group and from )Tj /F3 1 Tf 9 0 1.913 9 238.75 661.875 Tm (Z. indianus)Tj /F1 1 Tf 9 0 0 9 56.53 651.075 Tm 0.113 Tw (\(E. L., unpublished results\). Once again the divergence)Tj 0 -1.2 TD 0.0308 Tw [(between the )14.3(TE sequences is lower than that of the host)]TJ T* 0.0098 Tw [(gene, suggesting a possible horizontal transfer \(T)104.6(able 2\).)]TJ T* -0.0071 Tc -0.0695 Tw (A careful examination of alternative possibilities is currently)Tj T* 0 Tc 0.0825 Tw [(underway)68.4(. Finally)74.2(, Brunet and collaborators \(1999\) have)]TJ T* 0.0576 Tw (detected the presence of )Tj /F3 1 Tf 9 0 1.913 9 160.21 597.075 Tm 0 Tw (mariner)Tj /F1 1 Tf 9 0 0 9 190.69 597.075 Tm ( )Tj 0.3356 0 TD 0.0576 Tw (elements in )Tj /F3 1 Tf 9 0 1.913 9 243.31 597.075 Tm 0 Tw (Zaprionus)Tj -20.4983 -1.2 TD (indianus.)Tj /F1 1 Tf 9 0 0 9 92.59 586.275 Tm ( )Tj 0.2867 0 TD 0.0249 Tw (These elements are very closely related to that)Tj -4.2933 -1.2 TD 0 Tw (of )Tj /F3 1 Tf 9 0 1.913 9 67.39 575.475 Tm 0.0944 Tw (D. simulans)Tj /F1 1 Tf 9 0 0 9 115.27 575.475 Tm 0 Tw ( )Tj 0.3724 0 TD 0.0944 Tw [(\(T)109.8(able 2\). Whether the introduction of all)]TJ -6.8991 -1.2 TD 0.0714 Tw [(these )15.4(TE families into the )]TJ /F3 1 Tf 9 0 1.913 9 163.15 564.675 Tm (Z. indianus)Tj /F1 1 Tf 9 0 0 9 207.79 564.675 Tm 0 Tw ( )Tj 0.3494 0 TD 0.0714 Tw (genome is indeed)Tj -17.1561 -1.2 TD -0.0082 Tc -0.0694 Tw (recent, and results from the expansion of the species range)Tj T* 0 Tc -0.0293 Tw (remains to be shown, but the possibility is fascinating and)Tj T* -0.0007 Tw (certainly warrants further investigation.)Tj /F2 1 Tf 0 -2.4 TD -0.0057 Tc -0.0694 Tw [(Factors )35.3(Affecting the Frequency of Horizontal T)55.8(ransfer)]TJ /F1 1 Tf 0 -1.2 TD 0.0144 Tc 0.1389 Tw (A horizontal transfer event, defined as the successful)Tj T* 0 Tc -0.053 Tw [(invasion of a new species by a )15.9(TE, can be divided into two)]TJ T* -0.0054 Tw (phases: the transfer of DNA between donor and recipient)Tj T* -0.0121 Tc -0.0695 Tw [(and a subsequent increase in )8.4(TE frequency \(Kidwell, 1992\).)]TJ T* 0 Tc 0.1273 Tw [(The first phase requires the physical transfer of the )13.6(TE)]TJ T* 0.0502 Tw [(from one organism to another)51.1(, the stable integration into)]TJ T* 0.0013 Tc 0.1389 Tw [(the recipient)12.4(s germline and the expression of the )16.3(TE)17.2(s)]TJ T* 0 Tc -0.061 Tw (coding sequences. Once a stable transfer is achieved, the)Tj T* -0.023 Tw (element must increase in copy number within the cell and)Tj T* 0.045 Tc 0.1389 Tw (then spread throughout the population in order for)Tj T* 0 Tc -0.0005 Tw (horizontal transfer to succeed.)Tj 1.8933 -1.2 TD 0.0188 Tc 0.139 Tw [(Any one of these events seems unlikely)73.7(, and yet)]TJ -1.8933 -1.2 TD 0 Tc 0.0503 Tw [(horizontal transfer requires that they occur together)45.9(, in a)]TJ T* 0.039 Tw [(coordinated manner)52.1(. Because the presence and mobility)]TJ T* 0.0014 Tw (of a transposable element may be deleterious to the host)Tj T* 0.019 Tc 0.1389 Tw (\(for a review see Nuzhdin, 1999\), this spread will be)Tj T* 0 Tc 0.0598 Tw [(counteracted by selection and by host- and )16.3(TE-encoded)]TJ T* -0.0077 Tc -0.0695 Tw [(mechanisms that repress transposition. )15(Therefore, not only)]TJ T* 0 Tc 0.0755 Tw [(will an inherent predisposition of a )13.3(TE to perform any of)]TJ T* 0.0158 Tw (the required steps increase its probability of a successful)Tj T* 0.0105 Tc 0.1389 Tw [(transfer but, ultimately)67.6(, the structure and transposition)]TJ T* 0.0268 Tc [(mechanism of a )14.6(TEs are actively molded by the co-)]TJ T* 0 Tc -0.0006 Tw [(evolution between host and )16.3(TE.)]TJ /F3 1 Tf 9 0 1.913 9 56.53 240.675 Tm 0.0002 Tw (Stable Integration into a New Genome)Tj /F1 1 Tf 9 0 0 9 56.53 229.875 Tm -0.0167 Tw (The physical transfer of nuclear DNA from one species to)Tj T* 0.1128 Tw (another must occur in such a manner that the recipient)Tj T* 0.062 Tw (cell is able to take up the donor DNA. Once this occurs,)Tj T* -0.0096 Tc -0.0695 Tw (the DNA must enter the nucleus of a germline cell, integrate)Tj T* -0.0052 Tc [(into a chromosome and be expressed. )15.1(This process is best)]TJ T* 0 Tc -0.0045 Tw (understood for the )Tj /F3 1 Tf 9 0 1.913 9 132.01 175.875 Tm 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 138.01 175.875 Tm -0.0001 Tc -0.0044 Tw ( element, which for twenty years has)Tj -9.0533 -1.2 TD 0 Tc 0.0893 Tw (been used routinely to transform )Tj /F3 1 Tf 9 0 1.913 9 192.13 165.075 Tm 0 Tw (Drosophila)Tj /F1 1 Tf 9 0 0 9 235.15 165.075 Tm ( )Tj 0.3673 0 TD 0.0893 Tw (\(Rubin and)Tj -20.214 -1.2 TD 0.0118 Tc 0.1389 Tw (Spradling, 1982\). In this case, a )Tj /F3 1 Tf 9 0 1.913 9 196.75 154.275 Tm 0 Tc 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 202.87 154.275 Tm ( )Tj 0.4287 0 TD 0.0118 Tc 0.1389 Tw (element construct,)Tj -16.6887 -1.2 TD -0.0027 Tc -0.0695 Tw (carrying the terminal inverted repeats, is microinjected into)Tj T* 0 Tc 0.1132 Tw (the syncytial blastoderm of early embryos, where the )Tj /F3 1 Tf 9 0 1.913 9 277.33 132.675 Tm 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 56.53 121.875 Tm 0.0251 Tc 0.139 Tw [(elements subsequently transpose into the recipient)9.6(s)]TJ T* 0 Tc 0.0389 Tw [(genome. )14.6(This requires a supply of transposase, which is)]TJ T* -0.0122 Tw (produced from transcription of a transposase gene that is)Tj 27.7267 46.4867 TD 0.134 Tw (co-injected with the )Tj /F3 1 Tf 9 0 1.913 9 389.23 518.655 Tm 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 395.23 518.655 Tm ( )Tj 0.412 0 TD 0.134 Tw (element construct. Only some of)Tj -10.3187 -1.2 TD 0.0128 Tw (these insertions will occur in nuclei of those cells that will)Tj T* 0.0054 Tc 0.1389 Tw [(ultimately form germline tissue, potentially producing a)]TJ T* 0.0003 Tc (stable fly lineage that is genetically transformed. In the)Tj T* 0.029 Tc [(laboratory)75.9(, a strong promoter is used to provide the)]TJ T* 0 Tc -0.0515 Tw [(necessary level of transposase that is needed for mobility)75.2(.)]TJ T* 0.0017 Tw [(However)58.4(, in nature the integration and proper expression)]TJ T* 0.0203 Tc 0.139 Tw [(of a )18.9(TE would seem to be a daunting impediment to)]TJ T* 0 Tc -0.0004 Tw [(successful horizontal transfer)54.9(.)]TJ 1.8867 -1.2 TD 0.0022 Tw (Some of the complex features required for horizontal)Tj -1.8867 -1.2 TD -0.004 Tc -0.0694 Tw (transfer are integral characteristics of the life cycle of some)Tj T* 0.0154 Tc 0.1389 Tw [(TE families, and reflect selection on )20.5(TEs for ef)20.1(fective)]TJ T* 0.0049 Tc (transposition. For example, the transposase of class II)Tj T* 0 Tc 0.0578 Tw (elements belonging to the )Tj /F3 1 Tf 9 0 1.913 9 413.71 378.255 Tm 0 Tw [(mariner)15.7(-T)97.3(c1)]TJ /F1 1 Tf 9 0 0 9 461.23 378.255 Tm ( )Tj 0.3358 0 TD 0.0578 Tw (superfamily have)Tj -17.5758 -1.2 TD -0.0055 Tw (been found to contain a nuclear localization signal, which)Tj T* 0.1059 Tw (explains the migration of these enzymes to the nucleus)Tj T* 0.1225 Tw [(\(either upon translation or after co-transfer with its )15.8(TE\),)]TJ T* 0.0529 Tw [(where they facilitate )20.5(TE transposition \(Ivics )]TJ /F3 1 Tf 9 0 1.913 9 481.81 335.055 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 501.79 335.055 Tm (, 1996\).)Tj -21.7467 -1.2 TD 0.0113 Tc 0.1389 Tw [(Since Class II )17(TEs transpose predominantly via DNA-)]TJ T* 0 Tc -0.0677 Tw (mediated processes \(Kaufman and Rio, 1992; see Hartl )Tj /F3 1 Tf 9 0 1.913 9 525.31 313.455 Tm 0 Tw (et)Tj -24.1049 -1.2 TD 0.0213 Tc (al.)Tj /F1 1 Tf 9 0 0 9 316.15 302.655 Tm 0.1389 Tw (, 1997 for a review of transposition in )Tj /F3 1 Tf 9 0 1.913 9 483.37 302.655 Tm 0 Tw [(mariner)17.9(-T)93.2(c1)]TJ /F1 1 Tf 9 0 0 9 306.07 291.855 Tm -0.0012 Tc -0.0695 Tw (elements\), extra-chromosomal DNA copies of the element)Tj T* 0 Tc -0.0375 Tw (are a necessary feature of their transposition mechanism.)Tj T* 0.0008 Tc 0.1389 Tw (Class I elements, on the other hand, depend on extra-)Tj T* 0 Tc 0.1007 Tw (chromosomal copies of the element in the form of RNA)Tj T* -0.0056 Tc -0.0694 Tw (intermediates, which are necessarily not as stable as DNA.)Tj T* 0 Tc 0.0794 Tw (As is the case for the transposase of Class II elements,)Tj T* 0.0031 Tc 0.1389 Tw (the enzymes encoded by Class I elements need to be)Tj T* 0 Tc 0 Tw (produced at levels high enough to ensure transposition.)Tj 1.8867 -1.2 TD -0.0089 Tc -0.0694 Tw [(Dif)15.4(ferences in the transposition mechanism of L)74.8(TR and)]TJ -1.8867 -1.2 TD 0.013 Tc 0.1389 Tw [(non-L)75.2(TR Class I elements provide useful insights into)]TJ T* 0.0053 Tc [(varying rates of horizontal transfer among )17.5(TE families.)]TJ T* 0.011 Tc 0.139 Tw [(During the transposition of L)75.3(T)0(R retroelements, a DNA)]TJ T* -0.0066 Tc -0.0694 Tw (intermediate is produced, which can insert into the genome)Tj T* 0 Tc 0.0402 Tw (in a manner analogous to Class II elements \(Luan )Tj /F3 1 Tf 9 0 1.913 9 510.43 151.455 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 530.29 151.455 Tm 0 Tw (,)Tj -24.9133 -1.2 TD 0.0196 Tc 0.1389 Tw [(1993, and references therein\). However)51.2(, for non-L)77.7(TR)]TJ T* 0 Tc 0.0583 Tw (transposable elements, an RNA intermediate is reverse-)Tj T* 0.042 Tw (transcribed directly into a chromosomal target site \(Luan)Tj /F3 1 Tf 9 0 1.913 9 306.07 108.255 Tm -0.0064 Tc -0.0694 Tw (et al.)Tj /F1 1 Tf 9 0 0 9 324.61 108.255 Tm (, 1993\). Malik and collaborators \(1999\) suggested that)Tj -2.06 -1.2 TD 0 Tc 0.0921 Tw [(this dif)15.4(ference might be suf)23(ficient to explain the rarity of)]TJ 7 0 0 7 306.07 745.095 Tm 0 Tw (T)Tj 0.4971 0 TD -0.0011 Tw (able 2. Divergence \(substitutions per nucleotide\) of a host marker \()Tj /F3 1 Tf 7 0 1.4879 7 517.99 745.095 Tm 0 Tw (Sod)Tj /F1 1 Tf 7 0 0 7 530.47 745.095 Tm (\))Tj -32.0571 -1.2 TD 0.0009 Tw [(and of )17(TEs between )]TJ /F3 1 Tf 7 0 1.4879 7 370.15 736.6951 Tm (Z. indianus)Tj /F1 1 Tf 7 0 0 7 404.41 736.6951 Tm 0.0001 Tc 0.0008 Tw ( and two )Tj /F3 1 Tf 7 0 1.4879 7 432.85 736.6951 Tm 0 Tc 0 Tw (Drosophila)Tj /F1 1 Tf 7 0 0 7 466.33 736.6951 Tm 0.0001 Tc 0.0008 Tw ( species)Tj 4.9 0 0 4.9 492.01 739.095 Tm 0 Tc 0 Tw (1)Tj 7 0 0 7 494.71 736.6951 Tm (.)Tj /F3 1 Tf 7 0 1.4879 7 371.05 719.895 Tm -0.0017 Tw [(D. melanogaster)-3233.7(D. simulans)]TJ -8.7727 -2.4 TD -0.0022 Tw (D. simulans)Tj 2.4065 -1.2 TD 0.001 Tc 0 Tw (Sod)Tj 4.9 0 1.0415 4.9 333.61 697.095 Tm 0 Tc (2)Tj /F1 1 Tf 7 0 0 7 389.95 694.6951 Tm -0.0011 Tc (0.03)Tj /F3 1 Tf 7 0 1.4879 7 318.19 686.295 Tm 0.0011 Tc (gypsy)Tj 4.9 0 1.0415 4.9 336.49 688.6951 Tm 0 Tc (2)Tj /F1 1 Tf 7 0 0 7 389.95 686.295 Tm -0.0011 Tc (0.12)Tj /F3 1 Tf 7 0 1.4879 7 306.07 661.095 Tm 0 Tc 0.0013 Tw (Z. indianus)Tj 2.4065 -1.2 TD 0.001 Tc 0 Tw (Sod)Tj 4.9 0 1.0415 4.9 333.61 655.095 Tm 0 Tc (2)Tj /F1 1 Tf 7 0 0 7 389.95 652.695 Tm -0.0011 Tc [(0.32)-7572.8(0.33)]TJ /F3 1 Tf 7 0 1.4879 7 318.19 644.295 Tm 0.0011 Tc (gypsy)Tj 4.9 0 1.0415 4.9 336.49 646.695 Tm 0 Tc (2)Tj /F1 1 Tf 7 0 0 7 390.19 644.295 Tm -0.0008 Tc [(0.1)68.6(1)-7604.8(0.07)]TJ /F3 1 Tf 7 0 1.4879 7 313.75 635.895 Tm 0.0007 Tc (17.6/tom)Tj 4.9 0 1.0415 4.9 340.99 638.295 Tm 0 Tc (3)Tj /F1 1 Tf 7 0 0 7 456.55 635.895 Tm -0.0011 Tc (0.17)Tj /F3 1 Tf 7 0 1.4879 7 315.49 627.495 Tm 0.001 Tc (mariner)Tj 4.9 0 1.0415 4.9 339.25 629.895 Tm 0 Tc (4)Tj /F1 1 Tf 7 0 0 7 456.55 627.495 Tm -0.0011 Tc (0.06)Tj 4.9 0 0 4.9 306.13 613.095 Tm 0 Tc (1)Tj 7 0 0 7 308.83 610.695 Tm ( )Tj 0.2078 0 TD -0.0008 Tc -0.0694 Tw [(Divergence estimated according to Kimura)17.3(s 2-parameter model \(Kimura,)]TJ -0.6021 -1.2 TD 0.0001 Tc 0 Tw (1980\).)Tj 4.9 0 0 4.9 306.07 596.295 Tm 0 Tc (2)Tj 7 0 0 7 308.83 593.895 Tm 0.0002 Tc 0.0028 Tw ( Herdia \(2002\).)Tj 4.9 0 0 4.9 306.07 587.895 Tm 0 Tc 0 Tw (3)Tj 7 0 0 7 308.83 585.495 Tm 0.0008 Tw ( E. Loreto, unpublished results.)Tj 4.9 0 0 4.9 306.07 579.495 Tm 0 Tw (4)Tj 7 0 0 7 308.77 577.095 Tm ( )Tj 0.2063 0 TD -0.0022 Tc -0.0695 Tw (Genbank accession numbers for )Tj /F3 1 Tf 7 0 1.4879 7 410.53 577.095 Tm (D. simulans)Tj /F1 1 Tf 7 0 0 7 446.47 577.095 Tm 0 Tc 0 Tw ( )Tj 0.2063 0 TD -0.0022 Tc -0.0695 Tw (\(AF037052\) and )Tj /F3 1 Tf 7 0 1.4879 7 499.21 577.095 Tm (Z. indianus)Tj /F1 1 Tf 7 0 0 7 306.07 568.695 Tm 0 Tc 0 Tw (\(AF034700\) )Tj /F3 1 Tf 7 0 1.4879 7 344.95 568.695 Tm (mariner)Tj /F1 1 Tf 7 0 0 7 368.65 568.695 Tm -0.0002 Tc -0.002 Tw ( elements.)Tj ET 0 0 0 1 K 0.24 w /GS1 gs 1 i 306.19 755.475 m 306.19 755.295 l 306.07 754.575 m 532.81 754.575 l 306.07 731.355 m 532.81 731.355 l 306.07 622.815 m 532.81 622.815 l 306.07 562.695 m 532.81 562.695 l 306.07 714.915 m 532.81 714.915 l S endstream endobj 19 0 obj << /Type /Page /Parent 93 0 R /Resources 20 0 R /Contents 21 0 R /Thumb 68 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 20 0 obj << /ProcSet [ /PDF /Text ] /Font << /F1 114 0 R /F2 113 0 R /F3 128 0 R >> /ExtGState << /GS1 139 0 R /GS2 138 0 R >> /ColorSpace << /Cs8 112 0 R >> >> endobj 21 0 obj << /Length 14984 >> stream BT /F1 1 Tf 9 0 0 9 342.51 780.5551 Tm 0 0 0 1 k /GS2 gs 0 Tc -0.0155 Tw [(Horizontal Transfer of Transposable Elements 7)]TJ /F2 1 Tf 37.9351 29.4096 -29.4096 37.9351 42.9423 542.4378 Tm 2 Tr 0 0 0 0.45 K 0 J 0 j 0.576 w 10 M []0 d /Cs8 cs 0 scn /GS1 gs 0.0686 Tc -0.0001 Tw (PAGE PROOFS)Tj /F1 1 Tf 9 0 0 9 62.19 748.275 Tm 0 Tr 0 0 0 1 k /GS2 gs 0 Tc 0.0843 Tw [(non-L)70.4(TR elements)41( horizontal transfer)49.7(. )20.3(The transposition)]TJ 0 -1.2 TD 0.0341 Tw [(mechanism used by non-L)76.2(TR )11.8(TEs does not preclude the)]TJ T* 0.1271 Tw [(possibility of horizontal transfer using a virus as vector)49.7(,)]TJ T* -0.0025 Tc -0.0695 Tw (but reverse transcription probably has to occur directly into)Tj T* 0 Tc -0.0002 Tw (the viral DNA, an event that might be exceedingly rare.)Tj 1.8867 -1.2 TD 0.006 Tc 0.1389 Tw [(Thus, there appears to be a gradient of horizontal)]TJ -1.8867 -1.2 TD 0 Tc 0.0737 Tw (transfer that reflects the presence of DNA intermediates)Tj T* -0.0623 Tw (during the transposition events. Horizontal transfer seems)Tj T* 0.0022 Tw (much more common for Class II elements for which DNA)Tj T* -0.0139 Tw (intermediates are a persistent feature of the transposition)Tj T* -0.0464 Tw (process. Horizontal transfer seems to be less common for)Tj T* 0.0545 Tc 0.139 Tw [(Class I L)72(TR retroelements, which produce a DNA)]TJ T* 0.0019 Tc 0.1389 Tw (intermediate only after reverse transcription of an RNA)Tj T* -0.002 Tc -0.0695 Tw [(copy)77.2(, and horizontal transfer is least common for the Class)]TJ T* 0.0061 Tc 0.139 Tw [(I non-L)74.9(TR elements, for which no DNA)50( intermediate is)]TJ T* 0.0003 Tc 0 Tw (produced.)Tj /F3 1 Tf 9 0 1.913 9 62.19 564.675 Tm 0 Tc -0.0006 Tw [(Spread W)5.5(ithin the New Host)]TJ /F1 1 Tf 9 0 0 9 62.19 553.875 Tm 0.0086 Tw (After stable integration and expression, there must be an)Tj T* 0.0028 Tc 0.1389 Tw [(increase in copy number in order for the )17.4(TE to spread)]TJ T* 0 Tc 0.0916 Tw [(reliably throughout the population. )15.1(The increase in copy)]TJ T* -0.0137 Tc -0.0694 Tw (number within the cell results in a decrease in the probability)Tj T* 0 Tc 0.1236 Tw (of a gamete being formed that carries no copies of the)Tj T* -0.0309 Tw [(element. If fact, if all copies segregate independently)73.9(, that)]TJ T* 0.0656 Tw (probability decreases exponentially as \(1/2\))Tj /F3 1 Tf 6.3 0 1.3391 6.3 237.63 492.195 Tm 0 Tw (n)Tj /F1 1 Tf 9 0 0 9 241.17 489.075 Tm 0.0656 Tw (, where )Tj /F3 1 Tf 9 0 1.913 9 274.35 489.075 Tm 0 Tw (n)Tj /F1 1 Tf 9 0 0 9 279.33 489.075 Tm ( )Tj 0.3436 0 TD (is)Tj -24.4702 -1.2 TD 0.0654 Tw [(the total number of copies per genome. )13.7(This scenario is)]TJ T* -0.0095 Tc -0.0695 Tw [(simplistic, as )16.3(TE spread may be influenced by other factors,)]TJ T* -0.0041 Tc [(including biases in )17.1(TE insertion sites. For example, several)]TJ T* 0 Tc 0.0087 Tw (TEs have been shown to transpose preferentially to sites)Tj T* 0.0849 Tw (close to the parental copy \(Engels, 1989\), meaning that)Tj T* -0.0081 Tc -0.0694 Tw [(these copies would not segregate independently)69.6(. However)52.3(,)]TJ T* 0 Tc 0.032 Tw [(this model clearly exemplifies the powerful ef)12.4(fect of copy)]TJ T* -0.0117 Tc -0.0694 Tw [(number increase on )18.5(TE transmission; if an individual carries)]TJ T* 0 Tc -0.038 Tw [(in its genome ten )21(TE copies that segregate independently)]TJ T* -0.0012 Tc -0.0695 Tw [(of each other)55.8(, the probability of it generating a gamete with)]TJ T* 0 Tc 0.0002 Tw [(no )16.9(TEs is less than one in a thousand.)]TJ 1.8867 -1.2 TD 0.0072 Tc 0.1389 Tw [(Several studies have addressed the subject of )10(TE)]TJ -1.8867 -1.2 TD 0 Tc 0.0343 Tw [(spread, both by quantifying the number of )19.8(TE copies per)]TJ T* 0.1143 Tw [(genome and by estimating the rate of spread of )16.2(TEs in)]TJ T* -0.0127 Tc 0 Tw (populations. )Tj /F3 1 Tf 9 0 1.913 9 111.15 327.075 Tm (P )Tj /F1 1 Tf 9 0 0 9 118.77 327.075 Tm -0.0695 Tw (elements have been shown to spread rapidly)Tj -6.2867 -1.2 TD 0.0007 Tc 0.139 Tw (when first introduced into naive populations \(those that)Tj T* 0 Tc 0.0311 Tw [(lacks the )19.6(TE in question\) in the laboratory \(Kidwell )]TJ /F3 1 Tf 9 0 1.913 9 266.67 305.475 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 286.47 305.475 Tm 0 Tw (,)Tj -24.92 -1.2 TD -0.0026 Tw (1988; Good )Tj /F3 1 Tf 9 0 1.913 9 111.69 294.675 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 131.19 294.675 Tm [(, 1989\). )17.2(These results mimic the spread)]TJ -7.6667 -1.2 TD 0.0394 Tc 0 Tw (of )Tj /F3 1 Tf 9 0 1.913 9 74.49 283.875 Tm (P )Tj /F1 1 Tf 9 0 0 9 84.99 283.875 Tm 0.1389 Tw (elements throughout natural populations of )Tj /F3 1 Tf 9 0 1.913 9 279.57 283.875 Tm 0 Tw (D.)Tj -23.8983 -1.2 TD 0.0695 Tc (melanogaster)Tj /F1 1 Tf 9 0 0 9 124.23 273.075 Tm 0 Tc ( )Tj 0.677 0 TD 0.0695 Tc 0.3295 Tw (within the past 50 to 100 years)Tj -7.5703 -1.2 TD 0.0137 Tc 0 Tw (\(Anxolabhre )Tj /F3 1 Tf 9 0 1.913 9 126.21 262.275 Tm 0.1389 Tw (et al.)Tj /F1 1 Tf 9 0 0 9 147.69 262.275 Tm (, 1988\), with most flies examined)Tj -9.5 -1.2 TD 0 Tc -0.0539 Tw (recently carrying up to 60 )Tj /F3 1 Tf 9 0 1.913 9 163.35 251.475 Tm 0 Tw (P )Tj /F1 1 Tf 9 0 0 9 171.33 251.475 Tm -0.0539 Tw (element copies \(Ronsseray )Tj /F3 1 Tf 9 0 1.913 9 281.43 251.475 Tm 0 Tw (et)Tj -24.1049 -1.2 TD (al.)Tj /F1 1 Tf 9 0 0 9 71.67 240.675 Tm -0.0608 Tw (, 1989\). Canonical )Tj /F3 1 Tf 9 0 1.913 9 145.59 240.675 Tm 0 Tw (P )Tj /F1 1 Tf 9 0 0 9 153.57 240.675 Tm -0.0608 Tw (elements have also colonized very)Tj -10.1533 -1.2 TD -0.0004 Tc -0.0694 Tw [(recently the New W)14.1(orld species )]TJ /F3 1 Tf 9 0 1.913 9 187.35 229.875 Tm (D. willistoni)Tj /F1 1 Tf 9 0 0 9 231.69 229.875 Tm (, as suggested)Tj -18.8333 -1.2 TD 0 Tc -0.017 Tw [(by an average pairwise dif)14.8(ference between copies of less)]TJ T* 0.0679 Tw (than 1% \(Silva, 2000\) and by the low frequency of each)Tj T* -0.0019 Tc -0.0694 Tw (insertion \(A. Holyoke and M. Kidwell, unpublished results\).)Tj T* 0 Tc 0.0503 Tw (In addition, these elements were shown to spread faster)Tj T* 0.0308 Tc 0.1389 Tw (than neutral nuclear markers in natural populations,)Tj T* -0.004 Tc -0.0694 Tw (overcoming barriers such as moderate levels of population)Tj T* 0.0045 Tc 0.1389 Tw (subdivision \(Silva, 2000\), and are now present in 5-14)Tj T* 0.0695 Tc 0.1611 Tw (copies per genome \(A. Holyoke and M. Kidwell,)Tj T* 0 Tc 0.0002 Tw (unpublished results\).)Tj 1.8867 -1.2 TD -0.0535 Tw (A more dramatic example of the potential for increase)Tj -1.8867 -1.2 TD 0.0092 Tc 0.1389 Tw (in copy number accompanying horizontal transfer was)Tj T* 0 Tc 0.045 Tw (found for the )Tj /F3 1 Tf 9 0 1.913 9 116.43 100.275 Tm 0 Tw (mariner)Tj /F1 1 Tf 9 0 0 9 146.97 100.275 Tm ( )Tj 0.323 0 TD 0.045 Tw (element in some host species. For)Tj 17.977 72 TD 0.1288 Tw (example, the genome of the planarian, )Tj /F3 1 Tf 9 0 1.913 9 474.75 748.275 Tm (Dugesia tigrina)Tj /F1 1 Tf 9 0 0 9 535.9501 748.275 Tm 0 Tw (,)Tj -24.92 -1.2 TD 0.004 Tc 0.1389 Tw (contains approximately 8000 copies of )Tj /F3 1 Tf 9 0 1.913 9 474.87 737.475 Tm 0 Tw (mariner)Tj /F1 1 Tf 9 0 0 9 505.65 737.475 Tm 0 Tc ( )Tj 0.4209 0 TD 0.004 Tc 0.1389 Tw (and, of)Tj -21.9743 -1.2 TD -0.0116 Tc -0.0694 Tw (those sequenced, all are quite similar to each other \(Garcia-)Tj T* 0.0325 Tc 0 Tw (Fernandez )Tj /F3 1 Tf 9 0 1.913 9 361.41 715.875 Tm 0.1389 Tw (et al.)Tj /F1 1 Tf 9 0 0 9 383.91 715.875 Tm (, 1995\). Furthermore, the planarian)Tj /F3 1 Tf 9 0 1.913 9 311.67 705.0751 Tm 0.0038 Tc 0 Tw (mariners)Tj /F1 1 Tf 9 0 0 9 347.01 705.0751 Tm 0 Tc ( )Tj 0.4207 0 TD 0.0038 Tc 0.1389 Tw (are characterized by full-length, uninterrupted)Tj -4.3474 -1.2 TD -0.0031 Tc -0.0695 Tw (reading frames and are dispersed throughout the genome.)Tj T* 0 Tc 0 Tw (T)Tj 0.5 0 TD -0.0005 Tc -0.0695 Tw [(ogether)54(, these observations suggest recent transposition)]TJ -0.5 -1.2 TD 0 Tc 0.0001 Tw [(and spread following horizontal transfer)52.5(.)]TJ /F3 1 Tf 9 0 1.913 9 311.67 651.075 Tm 0.0002 Tw [(Factors Limiting the Spread of T)68.9(ransposable Elements)]TJ /F1 1 Tf 9 0 0 9 311.67 640.275 Tm 0.0385 Tw (The invasion of a new species after the initial integration)Tj T* -0.0031 Tc -0.0695 Tw (into the host genome is not always quick, or even possible.)Tj T* -0.0027 Tc [(Several factors might play a crucial role in )13.1(TE spread, such)]TJ T* 0.0355 Tc 0.1389 Tw [(as the ef)13.2(fective population size of the host species)]TJ T* 0.0085 Tc (\(Charlesworth and Charlesworth, 1983; Brookfield and)Tj T* 0.0274 Tc [(Badge, 1997; Quesneville and )52.2(Anxolabhre, 1997\),)]TJ T* 0.0474 Tc (selection \(Nuzhdin, 1999, and references therein\),)Tj T* 0 Tc -0.0062 Tw (repression of transposition, and the presence or absence)Tj T* 0.0097 Tc 0.1389 Tw [(of host factors required for transposition. )15.9(The last two)]TJ T* 0.0044 Tc [(factors vary considerably between )13.6(TE families and are)]TJ T* 0 Tc -0.0007 Tw [(discussed more extensively below)47.3(.)]TJ 0 -2.4 TD -0.0016 Tw (Host factors)Tj 0 -1.2 TD -0.0128 Tc -0.0694 Tw [(The ef)15.5(fect of host factors on )18.1(TE spread is well demonstrated)]TJ T* 0 Tc 0.0528 Tw [(by the dif)17(ference in the taxonomic range of host species)]TJ T* -0.0075 Tc -0.0695 Tw (for the )Tj /F3 1 Tf 9 0 1.913 9 337.89 478.275 Tm -0.0403 Tc 0 Tw (P )Tj /F1 1 Tf 9 0 0 9 345.33 478.275 Tm -0.0075 Tc -0.0695 Tw (element and )Tj /F3 1 Tf 9 0 1.913 9 395.31 478.275 Tm 0 Tw (mariner)Tj /F1 1 Tf 9 0 0 9 425.37 478.275 Tm 0 Tc ( )Tj 0.201 0 TD -0.0075 Tc -0.0695 Tw [(families. )61.3(Although both these)]TJ -12.8344 -1.2 TD 0 Tc -0.0257 Tw [(families are Class II )12.5(TEs, )]TJ /F3 1 Tf 9 0 1.913 9 412.41 467.475 Tm -0.0337 Tc 0 Tw (P )Tj /F1 1 Tf 9 0 0 9 420.33 467.475 Tm 0 Tc -0.0257 Tw (elements are phylogenetically)Tj -12.0733 -1.2 TD -0.0124 Tc -0.0694 Tw (restricted to Diptera \(mostly Drosophilids\), whereas )Tj /F3 1 Tf 9 0 1.913 9 508.59 456.675 Tm 0 Tw (mariner)Tj /F1 1 Tf 9 0 0 9 311.67 445.875 Tm 0 Tc 0.0755 Tw (has been found in many animal phyla \(Robertson )Tj /F3 1 Tf 9 0 1.913 9 515.73 445.875 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 535.9501 445.875 Tm 0 Tw (,)Tj -24.92 -1.2 TD 0.0787 Tw (2002\). Despite their very similar structure and life cycle,)Tj T* -0.0065 Tc -0.0695 Tw [(these two families dif)16.1(fer in a major aspect: the transposition)]TJ T* 0.0047 Tc 0 Tw (of )Tj /F3 1 Tf 9 0 1.913 9 323.07 413.475 Tm (P )Tj /F1 1 Tf 9 0 0 9 332.91 413.475 Tm 0.1389 Tw (elements requires a host enzyme, IRBP)Tj /F3 1 Tf 9 0 1.913 9 499.29 413.475 Tm 0 Tc 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 503.07 413.475 Tm 0.0047 Tc (\(inverted)Tj -21.2667 -1.2 TD -0.0026 Tc -0.0694 Tw [(repeat binding protein\), which binds the element)13.3(s inverted)]TJ T* 0 Tc -0.0654 Tw [(terminal repeats and is responsible for the element)11.9(s initial)]TJ T* 0.0994 Tw (excision from its chromosomal locus \(Beall )Tj /F3 1 Tf 9 0 1.913 9 489.63 381.075 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 510.03 381.075 Tm (, 1994;)Tj -22.04 -1.2 TD -0.0137 Tc -0.0694 Tw (Beall and Rio, 1997\). In contrast, purified transposase alone)Tj T* -0.0122 Tc -0.0695 Tw [(is suf)17.8(ficient to support the mobility of )]TJ /F3 1 Tf 9 0 1.913 9 450.21 359.475 Tm (mariner in vitro)Tj /F1 1 Tf 9 0 0 9 506.67 359.475 Tm 0 Tc 0 Tw ( )Tj 0.1963 0 TD -0.0122 Tc (\(Lampe)Tj /F3 1 Tf 9 0 1.913 9 311.67 348.675 Tm 0 Tc 0.0875 Tw (et al.)Tj /F1 1 Tf 9 0 0 9 332.01 348.675 Tm 0.0874 Tw [(, 1996\). )17.2(This striking distinction between these two)]TJ -2.26 -1.2 TD 0.0088 Tw (Class II elements may alone explain the wide distribution)Tj T* -0.0019 Tc 0 Tw (of )Tj /F3 1 Tf 9 0 1.913 9 321.03 327.075 Tm (mariner)Tj /F1 1 Tf 9 0 0 9 351.39 327.075 Tm 0 Tc ( )Tj 0.2067 0 TD -0.0019 Tc -0.0694 Tw (in contrast to that of )Tj /F3 1 Tf 9 0 1.913 9 431.31 327.075 Tm 0 Tc 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 437.31 327.075 Tm -0.0019 Tc -0.0694 Tw (. Indeed, if )Tj /F3 1 Tf 9 0 1.913 9 479.67 327.075 Tm -0.0337 Tc 0 Tw (P )Tj /F1 1 Tf 9 0 0 9 487.23 327.075 Tm -0.0019 Tc -0.0694 Tw (elements are)Tj -19.5067 -1.2 TD 0.039 Tc 0.1389 Tw (transferred into the germ cells of a new host, their)Tj T* 0.0218 Tc (transposition and concomitant spread depend on the)Tj T* 0 Tc -0.0292 Tw (existence of a host protein with properties similar to those)Tj T* 0.0134 Tc 0.1389 Tw [(of IRBP)125.5(. )15.1(The failure of the canonical )]TJ /F3 1 Tf 9 0 1.913 9 470.31 283.875 Tm -0.027 Tc 0 Tw (P )Tj /F1 1 Tf 9 0 0 9 479.97 283.875 Tm 0.0134 Tc 0.1389 Tw (element to be)Tj -18.7 -1.2 TD 0 Tc 0.1364 Tw (mobilized in non-drosophilids following microinjection in)Tj T* 0.1126 Tw (the laboratory is possibly due to the lack of such factor)Tj T* -0.0098 Tc -0.0695 Tw [(\(OBrochta and Handler)49(, 1988\). Interestingly)71.7(, )]TJ /F3 1 Tf 9 0 1.913 9 484.47 251.475 Tm 0 Tc 0 Tw (T)Tj 0.5 0 TD -0.0098 Tc (c1 )Tj /F1 1 Tf 9 0 0 9 500.13 251.475 Tm (elements,)Tj -20.94 -1.2 TD 0 Tc 0.0019 Tw (which belong to Class II )Tj /F3 1 Tf 9 0 1.913 9 409.35 240.675 Tm 0 Tw [(mariner)15.7(-T)97.3(c1)]TJ /F1 1 Tf 9 0 0 9 456.87 240.675 Tm 0.0001 Tc 0.0018 Tw ( superfamily and are)Tj -16.1333 -1.2 TD 0.0142 Tc 0.1389 Tw (widely distributed among animals and fungi \(Plasterk,)Tj T* 0.0365 Tc (1996\), much like their )Tj /F3 1 Tf 9 0 1.913 9 412.77 219.075 Tm 0 Tw (mariner)Tj /F1 1 Tf 9 0 0 9 445.59 219.075 Tm 0 Tc ( )Tj 0.4534 0 TD 0.0365 Tc 0.1389 Tw (cousins require only)Tj -15.3334 -1.2 TD 0 Tc 0.1202 Tw [(transposase activity for their mobility \(V)55(os )]TJ /F3 1 Tf 9 0 1.913 9 486.27 208.275 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 506.85 208.275 Tm (, 1996\).)Tj -21.6867 -1.2 TD -0.0087 Tc -0.0695 Tw (This apparent minimal requirement for mobility may explain)Tj T* 0 Tc 0.0894 Tw (why horizontal transfer between distantly related taxa is)Tj T* -0.0106 Tw (relatively common for )Tj /F3 1 Tf 9 0 1.913 9 399.45 175.875 Tm -0.0977 Tc 0 Tw [(Tc)-97.7(1)]TJ /F1 1 Tf 9 0 0 9 413.61 175.875 Tm 0 Tc ( )Tj 0.2674 0 TD (and )Tj /F3 1 Tf 9 0 1.913 9 433.47 175.875 Tm (mariner)Tj /F1 1 Tf 9 0 0 9 463.95 175.875 Tm (.)Tj -15.0267 -1.2 TD 0.0209 Tc 0.1389 Tw [(The influence of host factors on )18.5(TE mobility was)]TJ -1.8933 -1.2 TD 0 Tc 0.0448 Tw (illustrated by comparing the dynamics of the spread of a)Tj T* 0.1314 Tw (TE family that was introduced into the genomes of two)Tj T* -0.004 Tc -0.0695 Tw (closely related species. When )Tj /F3 1 Tf 9 0 1.913 9 429.63 132.675 Tm 0 Tw (P )Tj /F1 1 Tf 9 0 0 9 437.4901 132.675 Tm -0.0695 Tw (elements were introduced)Tj -13.98 -1.2 TD 0.0102 Tc 0.1389 Tw (into laboratory populations of )Tj /F3 1 Tf 9 0 1.913 9 437.67 121.875 Tm (D. melanogaster)Tj /F1 1 Tf 9 0 0 9 506.31 121.875 Tm 0 Tc 0 Tw ( )Tj 0.4271 0 TD 0.0102 Tc 0.1389 Tw (and its)Tj -22.0538 -1.2 TD 0.0057 Tc (sibling species )Tj /F3 1 Tf 9 0 1.913 9 376.05 111.075 Tm (D. simulans)Tj /F1 1 Tf 9 0 0 9 424.83 111.075 Tm (, there was a dramatic and)Tj -12.5733 -1.2 TD 0.0129 Tc [(repeatable dif)11.5(ference in the population dynamics of )]TJ /F3 1 Tf 9 0 1.913 9 532.47 100.275 Tm 0 Tc 0 Tw (P)Tj ET endstream endobj 22 0 obj << /Type /Page /Parent 93 0 R /Resources 23 0 R /Contents 24 0 R /Thumb 70 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 23 0 obj << /ProcSet [ /PDF /Text ] /Font << /F1 114 0 R /F2 113 0 R /F3 128 0 R >> /ExtGState << /GS1 139 0 R /GS2 138 0 R >> /ColorSpace << /Cs8 112 0 R >> >> endobj 24 0 obj << /Length 14863 >> stream BT /F1 1 Tf 9 0 0 9 55.93 779.115 Tm 0 0 0 1 k /GS2 gs -0.0001 Tc -0.0003 Tw (8 Silva )Tj /F3 1 Tf 9 0 1.913 9 90.43 779.115 Tm 0 Tc (et al)Tj /F1 1 Tf 9 0 0 9 107.47 779.115 Tm 0 Tw (.)Tj /F2 1 Tf 37.9351 29.4096 -29.4096 37.9351 34.496 531.1378 Tm 2 Tr 0 0 0 0.45 K 0 J 0 j 0.576 w 10 M []0 d /Cs8 cs 0 scn /GS1 gs 0.0686 Tc -0.0001 Tw (PAGE PROOFS)Tj /F1 1 Tf 9 0 0 9 56.53 748.275 Tm 0 Tr 0 0 0 1 k /GS2 gs 0 Tc -0.0602 Tw (element \(Kimura and Kidwell, 1994; Higuet )Tj /F3 1 Tf 9 0 1.913 9 226.39 748.275 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 245.35 748.275 Tm (, 1996\). )Tj /F3 1 Tf 9 0 1.913 9 277.33 748.275 Tm 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 56.53 737.475 Tm -0.0612 Tw (elements are significantly more active in )Tj /F3 1 Tf 9 0 1.913 9 215.29 737.475 Tm (D. melanogaster)Tj /F1 1 Tf 9 0 0 9 280.81 737.475 Tm 0 Tw (,)Tj -24.92 -1.2 TD -0.0079 Tc -0.0695 Tw (reaching a higher copy number per cell than in )Tj /F3 1 Tf 9 0 1.913 9 235.21 726.675 Tm (D. simulans)Tj /F1 1 Tf 9 0 0 9 280.81 726.675 Tm 0 Tc 0 Tw (.)Tj -24.92 -1.2 TD -0.054 Tw (These results suggest that, in addition to the transposase,)Tj T* 0.042 Tw (host-specific factors are necessary to support )Tj /F3 1 Tf 9 0 1.913 9 242.41 705.0751 Tm 0 Tw (P )Tj /F1 1 Tf 9 0 0 9 251.29 705.0751 Tm (element)Tj -21.64 -1.2 TD 0.0197 Tc 0.1389 Tw [(mobility at a suf)17.9(ficient level to ensure its spread and)]TJ T* 0.0013 Tc (subsequent persistence in a species, once it has been)Tj T* 0 Tc 0.0047 Tw [(introduced by horizontal transfer)51.5(. )14(These host factors may)]TJ T* -0.0009 Tc -0.0694 Tw (be in the form of a facilitator of transposition, such as IRBP)Tj T* 0 Tc 0.094 Tw (\(Badge and Brookfield, 1997\) or may be related to host)Tj T* -0.0026 Tc -0.0694 Tw (systems not directly related to transposition, such as those)Tj T* 0.0191 Tc 0.1389 Tw [(related to DNA)50.3( repair)60.1(. Quesneville and )51.8(Anxolabhre)]TJ T* 0 Tc 0.0137 Tw (\(1997\) have suggested that a species ability to deal with)Tj T* -0.061 Tw (the damage induced by )Tj /F3 1 Tf 9 0 1.913 9 150.43 607.875 Tm 0 Tw (P )Tj /F1 1 Tf 9 0 0 9 158.41 607.875 Tm -0.061 Tw (element excision can determine)Tj -11.32 -1.2 TD 0.0002 Tw [(the success or failure of horizontal transfer)49.3(.)]TJ 0 -2.4 TD -0.0019 Tc -0.0695 Tw (Regulation of copy number: repression of transposition )Tj /F3 1 Tf 9 0 1.913 9 271.87 575.475 Tm 0 Tw (vs)Tj /F1 1 Tf 9 0 0 9 280.81 575.475 Tm 0 Tc (.)Tj -24.92 -1.2 TD -0.0003 Tc (selection)Tj T* 0.0105 Tc 0.1389 Tw (Experimental data suggest that the initial stage of the)Tj T* -0.0045 Tc -0.0694 Tw (invasion of a naive genome by )Tj /F3 1 Tf 9 0 1.913 9 175.63 543.075 Tm 0 Tw (P )Tj /F1 1 Tf 9 0 0 9 183.43 543.075 Tm -0.0694 Tw (elements is characterized)Tj -14.1 -1.2 TD 0 Tc 0.0204 Tw (by a very high transposition rate, on the order of 10)Tj 6.3 0 0 6.3 262.03 535.395 Tm 0 Tw (-2)Tj 9 0 0 9 267.61 532.275 Tm ( )Tj 0.2984 0 TD (per)Tj -23.7517 -1.2 TD 0.0079 Tc 0.1389 Tw (element per generation \(Engels, 1989, and references)Tj T* 0 Tc 0.0609 Tw [(therein\). )13.6(That this may be the case for other )17(TE families)]TJ T* -0.0085 Tc -0.0694 Tw (\(even if not to the extreme seen in )Tj /F3 1 Tf 9 0 1.913 9 187.39 499.875 Tm 0 Tw (P )Tj /F1 1 Tf 9 0 0 9 195.13 499.875 Tm -0.0694 Tw (elements\) is supported)Tj -15.4 -1.2 TD -0.0059 Tc [(by the very high copy number attained by some )13.7(TE families)]TJ T* 0 Tc 0.1337 Tw (soon after invasion, as mentioned above for )Tj /F3 1 Tf 9 0 1.913 9 242.11 478.275 Tm 0 Tw (mariner )Tj /F1 1 Tf 9 0 0 9 276.31 478.275 Tm (in)Tj /F3 1 Tf 9 0 1.913 9 56.53 467.475 Tm 0.0084 Tc (Dugesia)Tj /F1 1 Tf 9 0 0 9 90.13 467.475 Tm 0.1389 Tw [(. Eventually)75.8(, however)49.8(, copy number ceases to)]TJ -3.7333 -1.2 TD 0.0006 Tc [(increase. )13.3(This stabilization in copy number can be due)]TJ T* -0.0059 Tc -0.0694 Tw [(either to selection at the host level or to a )11.2(TE self-regulation)]TJ T* -0.0054 Tc (mechanism \(Charlesworth and Charlesworth, 1983\). In the)Tj T* 0 Tc 0.0571 Tw (case of selection host fitness is a decreasing function of)Tj T* 0.137 Tw [(TE number)49.7(. In the case of self-regulation, transposition)]TJ T* 0.0002 Tw [(rate is a decreasing function of )10.9(TE number)59.6(.)]TJ 1.8933 -1.2 TD -0.0048 Tw (Regulation of transposition of Class I elements is still)Tj -1.8933 -1.2 TD 0.092 Tw [(poorly understood. However)55.7(, there is a growing body of)]TJ T* 0.0389 Tc 0.139 Tw [(evidence that suggests that self-regulation is not a)]TJ T* -0.005 Tc -0.0695 Tw (significant force in the stabilization of copy number in these)Tj T* 0 Tc 0.0296 Tw (families, since there seems to be no negative correlation)Tj T* 0.0099 Tw (between transposition rate and copy number \(Bimont )Tj /F3 1 Tf 9 0 1.913 9 275.83 337.875 Tm 0 Tw (et)Tj -24.1116 -1.2 TD 0.0058 Tc (al.)Tj /F1 1 Tf 9 0 0 9 66.19 327.075 Tm 0.1389 Tw [(, 1997; V)13.2(ieira and Bimont, 1997; Pasyukova )]TJ /F3 1 Tf 9 0 1.913 9 259.69 327.075 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 280.81 327.075 Tm 0 Tc 0 Tw (,)Tj -24.92 -1.2 TD -0.0541 Tw [(1998\). Rather)53.2(, selection has been suggested as the major)]TJ T* 0.0022 Tw [(force controlling Class I element copy number)51.8(, especially)]TJ T* 0.0259 Tc 0.1389 Tw (because of the fitness costs associated with ectopic)Tj T* 0 Tc 0.0115 Tw (recombination \(Charlesworth and Lapid, 1989; Maside )Tj /F3 1 Tf 9 0 1.913 9 275.83 283.875 Tm 0 Tw (et)Tj -24.1116 -1.2 TD (al.)Tj /F1 1 Tf 9 0 0 9 66.07 273.075 Tm -0.0537 Tw (, 2001\). Repression of transposition of Class I elements)Tj -1.06 -1.2 TD -0.0008 Tc -0.0695 Tw (can also be achieved by means of host-encoded peptides.)Tj T* 0 Tc 0.1072 Tw (This is the case for )Tj /F3 1 Tf 9 0 1.913 9 139.39 251.475 Tm 0 Tw (gypsy)Tj /F1 1 Tf 9 0 0 9 162.91 251.475 Tm 0.1072 Tw (, the transposition of which is)Tj -11.82 -1.2 TD 0.0247 Tc 0.1389 Tw (regulated by an X-linked gene called )Tj /F3 1 Tf 9 0 1.913 9 220.39 240.675 Tm 0 Tw (flamenco)Tj /F1 1 Tf 9 0 0 9 258.73 240.675 Tm 0 Tc ( )Tj 0.4416 0 TD 0.0247 Tc (in )Tj /F3 1 Tf 9 0 1.913 9 274.09 240.675 Tm (D.)Tj -23.9183 -1.2 TD 0 Tc (melanogaster)Tj /F1 1 Tf 9 0 0 9 111.13 229.875 Tm ( )Tj 0.2511 0 TD (\(Prudhomme )Tj /F3 1 Tf 9 0 1.913 9 169.63 229.875 Tm -0.0269 Tw (et al.)Tj /F1 1 Tf 9 0 0 9 188.89 229.875 Tm [(, 1995\). V)75.5(arying rates of)]TJ -14.7067 -1.2 TD -0.0052 Tc -0.0695 Tw (transposition of these elements among natural populations)Tj T* 0 Tc 0.0141 Tw (may be due to the presence of permissive and restrictive)Tj T* -0.008 Tc -0.0695 Tw (alleles, which are kept in balance by mutation and selection)Tj T* -0.0069 Tc -0.0694 Tw [(\(Nuzhdin, 1999\). )14.1(This is probably a tight balance, delicately)]TJ T* 0 Tc -0.0608 Tw (modulated by host TE interactions and hence specific for)Tj T* 0.1124 Tw [(each such pair)54.5(, as suggested by the recent finding that)]TJ /F3 1 Tf 9 0 1.913 9 56.53 154.275 Tm 0 Tw (flamenco)Tj /F1 1 Tf 9 0 0 9 93.07 154.275 Tm ( )Tj 0.2712 0 TD -0.0068 Tw (cannot repress transposition of )Tj /F3 1 Tf 9 0 1.913 9 220.87 154.275 Tm 0 Tw (gypsy)Tj /F1 1 Tf 9 0 0 9 244.33 154.275 Tm ( )Tj 0.2712 0 TD (elements)Tj -21.1379 -1.2 TD -0.0218 Tw (from other )Tj /F3 1 Tf 9 0 1.913 9 99.67 143.475 Tm 0 Tw (Drosophila)Tj /F1 1 Tf 9 0 0 9 142.69 143.475 Tm ( )Tj 0.2562 0 TD -0.0218 Tw (species when these are introduced)Tj -9.8295 -1.2 TD 0.0279 Tc 0 Tw (in )Tj /F3 1 Tf 9 0 1.913 9 68.05 132.675 Tm 0.139 Tw (D. melanogaster )Tj /F1 1 Tf 9 0 0 9 143.11 132.675 Tm 0 Tw (\(Mejlumian )Tj /F3 1 Tf 9 0 1.913 9 193.63 132.675 Tm 0.139 Tw (et al.)Tj /F1 1 Tf 9 0 0 9 215.89 132.675 Tm [(, 2002\). Finally)69.5(,)]TJ -17.7067 -1.2 TD 0.0223 Tc 0.1389 Tw [(methylation of )15.6(TE sequences can also play a role in)]TJ T* 0 Tc 0.0304 Tw (repression of transposition in some organisms \(Labrador)Tj T* -0.0007 Tw (and Corces, 1997; Matzke )Tj /F3 1 Tf 9 0 1.913 9 164.11 100.275 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 183.61 100.275 Tm (, 1999\).)Tj 15.4933 72 TD -0.0108 Tc -0.0695 Tw (Self-regulation depends on repression of transposition,)Tj -1.8867 -1.2 TD 0.0618 Tc 0.1389 Tw (which encompasses many processes that reduce)Tj T* 0.0032 Tc 0.139 Tw (transposition rate to varying degrees. Self-regulation is)Tj T* 0 Tc 0.0143 Tw (known for Class II families. )Tj /F3 1 Tf 9 0 1.913 9 416.23 715.875 Tm 0 Tw (P )Tj /F1 1 Tf 9 0 0 9 424.87 715.875 Tm 0.0143 Tw (elements in particular have)Tj -13.2 -1.2 TD 0.0417 Tw (been intensively studied and several types of repressors)Tj T* 0.0071 Tc 0.1389 Tw [(have been defined. )16.3(T)58.1(ype I repressors correspond to a)]TJ T* 0 Tc -0.0063 Tw (truncated version of the )Tj /F3 1 Tf 9 0 1.913 9 402.43 683.475 Tm 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 408.43 683.475 Tm -0.0063 Tw (-encoded transposase, and are)Tj -11.3733 -1.2 TD 0.0524 Tw [(produced by alternative splicing of the element)17.4(s mRNA;)]TJ T* 0.0206 Tc 0.1389 Tw (this yields a 66-kD repressor protein that prevents )Tj /F3 1 Tf 9 0 1.913 9 526.81 661.875 Tm 0 Tc 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 306.07 651.075 Tm 0.0784 Tw (element transcription \(Misra and Rio, 1990; Gloor )Tj /F3 1 Tf 9 0 1.913 9 510.13 651.075 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 530.29 651.075 Tm 0 Tw (,)Tj -24.9133 -1.2 TD -0.0079 Tc -0.0695 Tw (1993; Siebel )Tj /F3 1 Tf 9 0 1.913 9 356.41 640.275 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 374.83 640.275 Tm (, 1994; Roche )Tj /F3 1 Tf 9 0 1.913 9 430.57 640.275 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 448.99 640.275 Tm [(, 1995\). )18.7(T)36.4(ransposition)]TJ -15.88 -1.2 TD 0 Tc 0.0347 Tw (can also be repressed by a series of internally deleted )Tj /F3 1 Tf 9 0 1.913 9 526.81 629.475 Tm 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 306.07 618.675 Tm 0.0106 Tc 0.1389 Tw [(elements, called type II repressors. )17.8(These are usually)]TJ T* -0.0037 Tc -0.0695 Tw (byproducts of the repair of the double-stranded DNA break)Tj T* 0 Tc 0.0948 Tw (that occurs during )Tj /F3 1 Tf 9 0 1.913 9 382.63 597.075 Tm -0.0337 Tc 0 Tw (P )Tj /F1 1 Tf 9 0 0 9 391.63 597.075 Tm 0 Tc 0.0948 Tw [(element transposition. Supposedly)68.1(,)]TJ -9.5067 -1.2 TD 0.0033 Tc 0.1389 Tw (type II repressors act by binding the transposase itself)Tj T* 0 Tc 0 Tw (\(Rasmusson )Tj /F3 1 Tf 9 0 1.913 9 359.77 575.475 Tm 0.0781 Tw (et al.)Tj /F1 1 Tf 9 0 0 9 379.99 575.475 Tm [(, 1993; )58.9(Andrews and Gloor)55.2(, 1995\), by)]TJ -8.2133 -1.2 TD 0.0113 Tc 0.139 Tw [(binding the element sequence thus out-competing the)]TJ T* 0 Tc 0.0015 Tw (transposase enzyme \(Lee )Tj /F3 1 Tf 9 0 1.913 9 412.15 553.875 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 431.65 553.875 Tm (, 1996\), and by antisense)Tj -13.9533 -1.2 TD -0.0537 Tw [(RNA)57.7( interference \(Simmons )]TJ /F3 1 Tf 9 0 1.913 9 418.63 543.075 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 437.65 543.075 Tm [(, 1996\). )15(The )]TJ /F3 1 Tf 9 0 1.913 9 487.09 543.075 Tm 0 Tw [(KP)40.7( )]TJ /F1 1 Tf 9 0 0 9 500.83 543.075 Tm (element)Tj -21.64 -1.2 TD -0.0125 Tc -0.0695 Tw (is the most abundant type II repressor in natural populations)Tj T* 0 Tc 0 Tw (of )Tj /F3 1 Tf 9 0 1.913 9 316.03 521.475 Tm -0.0028 Tw (D. melanogaster)Tj /F1 1 Tf 9 0 0 9 382.03 521.475 Tm -0.0001 Tc [( \(Engels, 1989\). Finally)71(, the titration of)]TJ -8.44 -1.2 TD 0.0695 Tc 0.7041 Tw (transposase by its binding to defective or)Tj T* 0.0247 Tc 0 Tw (extrachromosomal )Tj /F3 1 Tf 9 0 1.913 9 387.61 499.875 Tm (P )Tj /F1 1 Tf 9 0 0 9 397.81 499.875 Tm 0.1389 Tw (element copies might also help)Tj -10.1933 -1.2 TD 0 Tc -0.0438 Tw (reduce transposition rates \(Simmons and Bucholz, 1985\).)Tj 1.8867 -1.2 TD -0.003 Tc -0.0695 Tw (Repression of transposition in other Class II elements,)Tj -1.8867 -1.2 TD 0 Tc 0.1126 Tw (even though not as well studied, seems to rely on self-)Tj T* 0.0926 Tw (regulation mechanisms as well \(for reviews see Hartl )Tj /F3 1 Tf 9 0 1.913 9 525.31 456.675 Tm 0 Tw (et)Tj -24.1049 -1.2 TD 0.011 Tc (al.)Tj /F1 1 Tf 9 0 0 9 315.85 445.875 Tm 0.1389 Tw [(, 1997; Labrador and Corces, 1997\). )12.4(These include)]TJ -1.0867 -1.2 TD 0.0001 Tc 0.004 Tw [(alternative splicing of the elements)18.7(s mRNA)52.9( that can give)]TJ T* 0 Tc -0.0606 Tw (rise to either repressor peptides or transposase \(Mason )Tj /F3 1 Tf 9 0 1.913 9 525.31 424.275 Tm 0 Tw (et)Tj -24.1049 -1.2 TD 0.0695 Tc (al.)Tj /F1 1 Tf 9 0 0 9 317.47 413.475 Tm 0.1939 Tw (, 1991\), negative feedback dependent on the)Tj -1.2667 -1.2 TD 0.0258 Tc 0.1389 Tw (concentration of transposase \(Lohe and Hartl, 1996;)Tj T* 0.0188 Tc (Labrador and Corces, 1997\), transposase titration by)Tj T* 0.0142 Tc (methods such as dominant-negative complementation)Tj T* 0 Tc 0 Tw (\(Lohe )Tj /F3 1 Tf 9 0 1.913 9 332.47 370.275 Tm 0.099 Tw (et al.)Tj /F1 1 Tf 9 0 0 9 352.87 370.275 Tm (, 1997\), and/or RNA interference \(Jensen )Tj /F3 1 Tf 9 0 1.913 9 525.31 370.275 Tm 0 Tw (et)Tj -24.1049 -1.2 TD (al.)Tj /F1 1 Tf 9 0 0 9 315.55 359.475 Tm 0.0592 Tw [(, 1999\). )14.2(These studies support the contention that the)]TJ -1.0533 -1.2 TD 0.0032 Tc 0.139 Tw (mobility of Class II elements is, to a large extent, self-)Tj T* 0.0003 Tc 0 Tw (regulated.)Tj /F2 1 Tf 0 -2.4 TD 0 Tc 0.0006 Tw [(Correlates of Horizontal T)52.6(ransfer)]TJ /F1 1 Tf T* -0.0029 Tc -0.0695 Tw (As described above, horizontal transfer is apparently more)Tj 0 -1.2 TD 0 Tc -0.0467 Tw [(frequent among Class II than Class I )18.3(TEs, and this pattern)]TJ T* 0.0168 Tc 0.139 Tw [(seems to be due in part to the dif)14.8(ferent transposition)]TJ T* 0 Tc -0.012 Tw [(mechanisms used by the two classes. )56.6(Another reason for)]TJ T* -0.0457 Tw [(this dif)17.6(ference may be that while Class II elements appear)]TJ T* 0.115 Tw [(to be mostly self-regulating, Class I )22.5(TEs are not. Could)]TJ T* 0.0387 Tw [(this dif)22.1(ference in regulatory mechanism be related to the)]TJ T* -0.0169 Tw [(incidence of horizontal transfer? Possibly)73.4(, if the degree to)]TJ T* 0.0957 Tw [(which self-regulation represses transposition is ef)12.9(fective)]TJ T* 0.0003 Tc 0 Tw (enough.)Tj 1.8867 -1.2 TD 0 Tc 0.0423 Tw [(In order for a )18.8(TE lineage to persist through time, the)]TJ -1.8867 -1.2 TD -0.019 Tw (rate at which new functional elements arise must balance)Tj T* 0.0536 Tc 0.1389 Tw (the rate at which they are lost \(Charlesworth and)Tj T* 0 Tc -0.0258 Tw [(Charlesworth, 1983\). )54.2(A)53.7( functional element \(those capable)]TJ T* -0.0139 Tw (of transposition and which encode functional enzymes\) is)Tj T* 0.0387 Tw (lost due to a variety of processes, which include random)Tj T* 0.0713 Tw (loss \()Tj /F3 1 Tf 9 0 1.913 9 328.21 121.875 Tm 0 Tw (e.g.)Tj /F1 1 Tf 9 0 0 9 343.21 121.875 Tm 0.0713 Tw (, failure of the host to reproduce\), substitutions)Tj -4.1267 -1.2 TD 0.0291 Tc 0.1389 Tw (and insertions/deletions that render the transposase)Tj T* 0.0072 Tc (inactive, excision \()Tj /F3 1 Tf 9 0 1.913 9 383.41 100.275 Tm 0 Tw (e.g.)Tj /F1 1 Tf 9 0 0 9 398.65 100.275 Tm 0.1389 Tw (, a Class II element that, during)Tj ET endstream endobj 25 0 obj << /Type /Page /Parent 93 0 R /Resources 26 0 R /Contents 27 0 R /Thumb 72 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 26 0 obj << /ProcSet [ /PDF /Text /ImageC /ImageI ] /Font << /F1 114 0 R /F2 113 0 R /F3 128 0 R >> /XObject << /Im2 28 0 R >> /ExtGState << /GS1 139 0 R /GS2 138 0 R >> /ColorSpace << /Cs8 112 0 R /Cs10 54 0 R >> /Properties << /MC2 30 0 R >> >> endobj 27 0 obj << /Length 11200 >> stream BT /F1 1 Tf 9 0 0 9 342.51 780.5551 Tm 0 0 0 1 k /GS2 gs 0 Tc -0.0155 Tw [(Horizontal Transfer of Transposable Elements 9)]TJ /F2 1 Tf 37.9351 29.4096 -29.4096 37.9351 42.9423 542.4378 Tm 2 Tr 0 0 0 0.45 K 0 J 0 j 0.576 w 10 M []0 d /Cs8 cs 0 scn /GS1 gs 0.0686 Tc -0.0001 Tw (PAGE PROOFS)Tj /F1 1 Tf 9 0 0 9 62.19 748.275 Tm 0 Tr 0 0 0 1 k /GS2 gs 0.0235 Tc 0.1389 Tw (transposition, fails to re-insert\) and selection against)Tj 0 -1.2 TD 0 Tc -0.0374 Tw (individual hosts with specific deleterious insertions or with)Tj T* -0.019 Tw [(too many )19.8(TE copies. When the rate of transposition is not)]TJ T* 0.0384 Tw [(high enough to counteract the ef)15(fect of these processes,)]TJ T* 0.0839 Tw [(the )18.6(TE lineage will eventually go extinct. )56.8(Among Class I)]TJ T* 0.0851 Tw (elements, the rate of transposition is apparently at least)Tj T* 0.125 Tw (one order of magnitude larger that the rate of excision,)Tj T* 0.0695 Tc 0.2707 Tw [(and selection keeps )17.4(TE copy number in check)]TJ T* 0 Tc -0.0005 Tw [(\(Charlesworth and Langley)68(, 1991\).)]TJ 1.8867 -1.2 TD -0.0111 Tc -0.0694 Tw (A relevant question is whether the self-regulating Class)Tj -1.8867 -1.2 TD 0.0046 Tc 0.139 Tw [(II )20.2(TEs can maintain a rate of transposition that is high)]TJ T* 0 Tc 0.0652 Tw (enough to prevent lineage extinction, once repression is)Tj T* -0.0139 Tw (established. Not much is known about transposition rates)Tj T* -0.0028 Tw [(of Class II )15.5(TEs in natural population. However)57.4(, laboratory)]TJ T* -0.0123 Tw (studies show that a few generations after the introduction)Tj T* 0.0281 Tc 0 Tw (of )Tj /F3 1 Tf 9 0 1.913 9 74.19 586.275 Tm (P )Tj /F1 1 Tf 9 0 0 9 84.45 586.275 Tm 0.1389 Tw (elements into naive populations the )Tj /F3 1 Tf 9 0 1.913 9 243.39 586.275 Tm 0 Tw (P )Tj /F1 1 Tf 9 0 0 9 253.65 586.275 Tm (cytotype)Tj -21.2733 -1.2 TD 0.0056 Tc 0.1389 Tw (becomes established, a condition characterized by the)Tj T* 0.0077 Tc 0.139 Tw (suppression of )Tj /F3 1 Tf 9 0 1.913 9 126.81 564.675 Tm 0 Tw (P )Tj /F1 1 Tf 9 0 0 9 136.65 564.675 Tm 0.139 Tw (element transposition \(Engels, 1979;)Tj -8.2733 -1.2 TD 0.0163 Tc 0.1389 Tw (Kidwell, 1985; Engels, 1989, and references therein\).)Tj T* 0.0331 Tc (Although not thoroughly understood, the )Tj /F3 1 Tf 9 0 1.913 9 242.97 543.075 Tm 0 Tw (P )Tj /F1 1 Tf 9 0 0 9 253.35 543.075 Tm (cytotype)Tj -21.24 -1.2 TD 0 Tc -0.0195 Tw (condition is maternally inherited and depends on both the)Tj T* 0.0076 Tw (presence and the location of )Tj /F3 1 Tf 9 0 1.913 9 178.11 521.475 Tm 0 Tw (P )Tj /F1 1 Tf 9 0 0 9 186.69 521.475 Tm 0.0076 Tw (element insertions, and is)Tj -13.8333 -1.2 TD 0.0506 Tw (related to the transmission of repressor peptides or their)Tj T* -0.0306 Tw [(mRNA)57.4( to the zygote, through the oocyte)14.7(s cytoplasm \(see)]TJ T* -0.054 Tw (Labrador and Corces, 1997 for a review; Ronsseray )Tj /F3 1 Tf 9 0 1.913 9 267.39 489.075 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 286.47 489.075 Tm 0 Tw (,)Tj -24.92 -1.2 TD 0.0203 Tc 0.1389 Tw (1998; Ronsseray )Tj /F3 1 Tf 9 0 1.913 9 138.15 478.275 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 159.99 478.275 Tm (, 2001, Simmons )Tj /F3 1 Tf 9 0 1.913 9 236.73 478.275 Tm (et al)Tj /F1 1 Tf 9 0 0 9 255.87 478.275 Tm (, 2002\).)Tj -21.52 -1.2 TD 0 Tc 0 Tw (T)Tj 0.5867 0 TD 0.0076 Tc 0.139 Tw [(runcated peptides with putative repressor capabilities)]TJ -0.5867 -1.2 TD 0 Tc -0.0234 Tw (have also been found in )Tj /F3 1 Tf 9 0 1.913 9 159.21 456.675 Tm 0 Tw (Drosophila)Tj /F1 1 Tf 9 0 0 9 202.23 456.675 Tm ( )Tj 0.2546 0 TD -0.0234 Tw (species other than )Tj /F3 1 Tf 9 0 1.913 9 279.93 456.675 Tm 0 Tw (D.)Tj -23.9383 -1.2 TD 0.0159 Tc (melanogaster)Tj /F1 1 Tf 9 0 0 9 118.47 445.875 Tm 0.1389 Tw (, which shows that repressors can arise)Tj -6.2533 -1.2 TD 0 Tc -0.0091 Tw [(repeatedly \(Nouaud and )52.2(Anxolabhre, 1997\). Moreover)50.7(,)]TJ T* 0.068 Tw (the presence of the )Tj /F3 1 Tf 9 0 1.913 9 144.21 424.275 Tm 0 Tw (KP)Tj /F1 1 Tf 9 0 0 9 156.21 424.275 Tm ( )Tj 0.346 0 TD 0.068 Tw (repressor at a high frequency in)Tj 16.9273 36 TD -0.0023 Tc -0.0694 Tw (populations of )Tj /F3 1 Tf 9 0 1.913 9 368.67 748.275 Tm (D. melanogaster)Tj /F1 1 Tf 9 0 0 9 433.77 748.275 Tm 0 Tc 0 Tw ( )Tj 0.2063 0 TD -0.0023 Tc -0.0694 Tw (worldwide provide support)Tj -13.7729 -1.2 TD 0 Tc 0.0695 Tw (for the idea that new repressors can quickly spread and)Tj T* -0.0294 Tw (be maintained by selection \(Black )Tj /F3 1 Tf 9 0 1.913 9 446.97 726.675 Tm (et al.)Tj /F1 1 Tf 9 0 0 9 466.17 726.675 Tm (, 1987; Jackson )Tj /F3 1 Tf 9 0 1.913 9 530.97 726.675 Tm 0 Tw (et)Tj -24.1116 -1.2 TD (al.)Tj /F1 1 Tf 9 0 0 9 321.21 715.875 Tm -0.0272 Tw [(, 1988\). )14.6(These studies strongly suggest that repression)]TJ -1.06 -1.2 TD 0 Tw (of )Tj /F3 1 Tf 9 0 1.913 9 321.27 705.0751 Tm (P)Tj /F1 1 Tf 9 0 0 9 327.27 705.0751 Tm ( )Tj 0.2264 0 TD -0.0516 Tw [(element transposition can be quite ef)16.9(fective. Whether)]TJ -1.9597 -1.2 TD -0.054 Tw (or not repression of transposition is as strong in other self-)Tj T* -0.0002 Tw (regulated Class II elements remains to be determined.)Tj 1.8933 -1.2 TD -0.0121 Tw (Finally it should be noted that complete repression of)Tj -1.8933 -1.2 TD 0.1024 Tw [(transposition may not be required for extinction of a )13(TE)]TJ T* -0.054 Tw (lineage. Kaplan and collaborators \(1985\) have shown that)Tj T* -0.0081 Tc -0.0695 Tw [(self-regulating )12.3(TE lineages are expected to go extinct when)]TJ T* 0.0682 Tc 0.1389 Tw (non-functional elements can be transposed by a)Tj T* -0.0108 Tc -0.0694 Tw (transposase produced in )Tj /F3 1 Tf 9 0 1.913 9 408.57 618.675 Tm 0 Tw (trans)Tj /F1 1 Tf 9 0 0 9 428.07 618.675 Tm (, )Tj /F3 1 Tf 9 0 1.913 9 432.27 618.675 Tm (i.e.)Tj /F1 1 Tf 9 0 0 9 443.91 618.675 Tm -0.0694 Tw (, a transposase encoded)Tj -14.6933 -1.2 TD 0 Tc 0.0199 Tw [(by another element. )9.1(This is the case for )]TJ /F3 1 Tf 9 0 1.913 9 473.07 607.875 Tm 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 479.07 607.875 Tm ( )Tj 0.2979 0 TD 0.0199 Tw (elements and,)Tj -18.8979 -1.2 TD 0.0001 Tw [(probably)68.4(, for other Class II )17.4(TE families as well.)]TJ 1.8933 -1.2 TD -0.0141 Tc -0.0695 Tw (Assuming, for the sake of argument, that self-regulation)Tj -1.8933 -1.2 TD -0.0019 Tc (is indeed conducive to extinction, then continual horizontal)Tj T* 0 Tc -0.0454 Tw [(transfer becomes necessary for the survival of Class II )13.9(TE)]TJ T* 0.0365 Tc 0.1389 Tw (families. While Class I elements persist through an)Tj T* 0 Tc 0.1053 Tw (equilibrium between transposition and loss, Class II are)Tj T* 0.0137 Tc 0.1389 Tw [(always on the run \(Figure 2\). )48.9(As long as repression)]TJ T* -0.0022 Tc -0.0695 Tw [(persists, at least one )20.3(TE copy must find its way into a naive)]TJ T* 0 Tc 0.0387 Tw (genome, where repression is still absent, giving rise to a)Tj T* 0.0047 Tc 0.1389 Tw (new pool of functional copies to re-initiate the cycle of)Tj T* -0.0087 Tc -0.0694 Tw [(transposition and spread. )12.5(This scenario leads to a few quite)]TJ T* 0 Tc 0.0337 Tw (interesting predictions. First, because it depends on how)Tj T* -0.0067 Tc -0.0694 Tw (quickly repression of transposition arises, copy number per)Tj T* 0 Tc 0.0989 Tw (genome is likely to vary among populations and among)Tj T* -0.0467 Tw [(species. )12.7(There is already evidence that this is the case for)]TJ /F3 1 Tf 9 0 1.913 9 311.67 435.075 Tm 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 317.67 435.075 Tm ( )Tj 0.3258 0 TD 0.0478 Tw [(elements, the copy number of which is known to dif)10.5(fer)]TJ -0.9925 -1.2 TD -0.0027 Tc -0.0694 Tw (among species of the )Tj /F3 1 Tf 9 0 1.913 9 396.75 424.275 Tm 0 Tw (willistoni)Tj /F1 1 Tf 9 0 0 9 429.9901 424.275 Tm 0 Tc ( )Tj 0.2059 0 TD -0.0027 Tc -0.0694 Tw (species group \(Daniels and)Tj 7 0 0 7 62.19 164.955 Tm 0 Tc -0.0067 Tw (Figure 2. Stages of the life cycle of a hypothetical Class II, self-regulated, transposable element lineage. \()Tj /F3 1 Tf 7 0 1.4879 7 387.15 164.955 Tm 0 Tw (i)Tj /F1 1 Tf 7 0 0 7 388.71 164.955 Tm -0.0067 Tw [(\) )55.7(An element is transferred into a germline cell of)]TJ -46.6457 -1.2 TD -0.128 Tw [(host A. )-59.1(\()]TJ /F3 1 Tf 7 0 1.4879 7 86.91 156.555 Tm 0 Tw (ii)Tj /F1 1 Tf 7 0 0 7 90.03 156.555 Tm -0.0689 Tw [(\) Once the element has successfully integrated into the host DNA)56.7( and is expressed, transposition will start, with a concomitant)]TJ 54.3258 0 TD 0 Tw ( )Tj 0.2091 0 TD -0.0689 Tw (rapid increase in copy)Tj -58.5121 -1.2 TD -0.0622 Tw [(number)55.8(. \()]TJ /F3 1 Tf 7 0 1.4879 7 91.35 148.155 Tm 0 Tw (iii)Tj /F1 1 Tf 7 0 0 7 95.97 148.155 Tm -0.0622 Tw [(\) Repression of transposition arises and spreads throughout the host population. )54.9(As a result, the growth rate in copy number sl)]TJ 54.5614 0 TD (ows. \()Tj /F3 1 Tf 7 0 1.4879 7 496.17 148.155 Tm 0 Tw (iv)Tj /F1 1 Tf 7 0 0 7 501.27 148.155 Tm -0.0622 Tw [(\) )60.2(At this time)]TJ -62.7257 -1.2 TD -0.0516 Tw (the rate of loss of functional elements is higher than the rate at which they are created by transposition, and the number of f)Tj 53.2861 0 TD (unctional elements in the genome)Tj -53.2861 -1.2 TD -0.0636 Tw [(slowly decreases. )19.1(This process that can take many millions of years \(abbreviated period represented by a dashed line\). \()]TJ /F3 1 Tf 7 0 1.4879 7 427.17 131.355 Tm 0 Tw (v)Tj /F1 1 Tf 7 0 0 7 430.71 131.355 Tm -0.0636 Tw [(\) Finally)76.5(, no functional elements are)]TJ -52.6457 -1.2 TD -0.0148 Tw [(left in the genome of host )52.9(A, and this )13(TE lineage becomes extinct. Sometime between \()]TJ /F3 1 Tf 7 0 1.4879 7 329.79 122.955 Tm 0 Tw (ii)Tj /F1 1 Tf 7 0 0 7 332.91 122.955 Tm -0.0148 Tw (\) and \()Tj /F3 1 Tf 7 0 1.4879 7 352.89 122.955 Tm 0 Tw (v)Tj /F1 1 Tf 7 0 0 7 356.37 122.955 Tm -0.0148 Tw (\), a functional element may be transferred horizontally \(HT\))Tj -42.0257 -1.2 TD -0.0214 Tw [(to a new host and the process begins anew)50.8(. So, the death of the lineage in host )59.7(A)49.9( does not necessarily imply the death of the )15(T)]TJ 55.5796 0 TD [(E family)74.3(. Eventually)82(, another)]TJ -55.5796 -1.2 TD -0.0337 Tw [(functional element may escape to yet another host. If, at this time, repression of transposition has subsided in host )55.2(A, it can)]TJ 53.6543 0 TD 0 Tw ( )Tj 0.2443 0 TD -0.0337 Tw [(be invaded again. )15.3(The presence)]TJ -53.8986 -1.2 TD -0.0271 Tw [(of multiple, quite divergent )21.8(TE subfamilies of )]TJ /F3 1 Tf 7 0 1.4879 7 200.07 97.755 Tm 0 Tw (mariner)Tj /F1 1 Tf 7 0 0 7 223.77 97.755 Tm ( )Tj 0.2509 0 TD (and )Tj /F3 1 Tf 7 0 1.4879 7 238.95 97.755 Tm (P)Tj /F1 1 Tf 7 0 0 7 243.57 97.755 Tm ( )Tj 0.2509 0 TD -0.0271 Tw (elements in the same host is probably the signature of independent waves of horizontal transfer)Tj -26.1623 -1.2 TD 0 Tw (\(Clark)Tj /F3 1 Tf 7 0 1.4879 7 80.85 89.355 Tm -0.0001 Tc -0.0009 Tw ( et al.)Tj /F1 1 Tf 7 0 0 7 97.95 89.355 Tm 0 Tc -0.001 Tw (, 1995; Lampe)Tj /F3 1 Tf 7 0 1.4879 7 142.71 89.355 Tm -0.0001 Tc -0.0009 Tw ( et al.)Tj /F1 1 Tf 7 0 0 7 159.81 89.355 Tm 0 Tc -0.001 Tw (, 2001\).)Tj ET /EmbeddedDocument /MC2 BDC q 1 i 62.19 391.215 476.28 -208.32 re W n 1 G 0.456 w /GS1 gs 58.092 420.845 484.931 -247.067 re S q 476.28 0 0 209.6875 62.19 181.9833 cm /Im2 Do Q EMC Q endstream endobj 28 0 obj << /Type /XObject /Subtype /Image /Width 1046 /Height 460 /BitsPerComponent 8 /ColorSpace 54 0 R /Length 481161 >> stream                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              endstream endobj 29 0 obj << /Length 776 >> stream SAMSON endstream endobj 30 0 obj << /MetaData 29 0 R /Title (SAMSON) /Creator (Adobe\37777777650 PageMaker\37777777650 6.5: LaserWriter 8 Z1-8.7.1) >> endobj 31 0 obj << /Type /Page /Parent 93 0 R /Resources 32 0 R /Contents 33 0 R /Thumb 74 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 32 0 obj << /ProcSet [ /PDF /Text ] /Font << /F1 114 0 R /F2 113 0 R /F3 128 0 R >> /ExtGState << /GS1 139 0 R /GS2 138 0 R >> /ColorSpace << /Cs8 112 0 R >> >> endobj 33 0 obj << /Length 12862 >> stream BT /F1 1 Tf 9 0 0 9 55.93 779.115 Tm 0 0 0 1 k /GS2 gs -0.0001 Tc -0.0003 Tw (10 Silva )Tj /F3 1 Tf 9 0 1.913 9 95.47 779.115 Tm 0 Tc (et al)Tj /F1 1 Tf 9 0 0 9 112.45 779.115 Tm 0 Tw (.)Tj /F2 1 Tf 37.9351 29.4096 -29.4096 37.9351 34.496 531.1378 Tm 2 Tr 0 0 0 0.45 K 0 J 0 j 0.576 w 10 M []0 d /Cs8 cs 0 scn /GS1 gs 0.0686 Tc -0.0001 Tw (PAGE PROOFS)Tj /F1 1 Tf 9 0 0 9 56.53 748.275 Tm 0 Tr 0 0 0 1 k /GS2 gs 0 Tc -0.0673 Tw [(Strausbaugh, 1986\). Second, in populations where the )12(TE)]TJ 0 -1.2 TD -0.0041 Tc -0.0695 Tw (copy number is stable, an increase in the number of copies)Tj T* 0 Tc 0.057 Tw (should be possible through the elimination of the source)Tj T* 0.0877 Tw [(of repression. Finally)67.1(, unless they are a recently formed)]TJ T* 0.0099 Tc 0.1389 Tw [(family)70.4(, self-regulated )18.1(TEs should all show evidence of)]TJ T* 0 Tc 0.0181 Tw [(horizontal transfer)54.5(. )14.1(The maximum length of time before a)]TJ T* 0.0042 Tc 0.1389 Tw (horizontal transfer is required \(time to extinction of the)Tj T* 0 Tc -0.0326 Tw (family\) will depend on several characteristics, such as the)Tj T* 0.0125 Tc 0.1389 Tw (number of copies per genome and the rate of loss of)Tj T* 0 Tc 0.0819 Tw (functional elements. In this context, the study of class II)Tj T* 0.004 Tc 0.1389 Tw (families in which transmission seems to be exclusively)Tj T* 0 Tc 0.0001 Tw (vertical, if any is found, would be extremely fruitful.)Tj /F2 1 Tf 0 -2.4 TD 0 Tw (Conclusions)Tj /F1 1 Tf 0 -2.8 TD 0.0099 Tc 0.1389 Tw [(Successful )14(TE horizontal transfer events depend on a)]TJ 0 -1.2 TD 0 Tc 0.1195 Tw (stable transfer between donor and recipient and on the)Tj T* 0.0016 Tw (subsequent spread throughout the new host populations.)Tj T* 0.004 Tw [(Although detected for all types of )12.9(TEs, horizontal transfer)]TJ T* 0.0975 Tw (seems considerably more frequent among Class II than)Tj T* -0.0531 Tw (Class I families. Evidence summarized here indicates that)Tj T* -0.0589 Tw [(this pattern is due to fundamental dif)13.7(ferences between the)]TJ T* -0.0013 Tc -0.0695 Tw [(two )19.2(TE Classes. )12.9(The major transposition mechanism used)]TJ T* 0 Tc -0.0352 Tw (by Class II elements is better suited for horizontal transfer)Tj T* 0.1088 Tw [(than those used by Class I )15(TE families. In addition, the)]TJ T* -0.0067 Tc -0.0695 Tw [(type of copy number regulation used by Class II )17.7(TEs, which)]TJ T* 0 Tc -0.0256 Tw (seem to be mostly self-regulated, may make it impossible)Tj T* -0.0431 Tw (for these elements to sustain a rate of transposition that is)Tj T* 0.0069 Tc 0.1389 Tw (compatible with their long-term survival within a single)Tj T* -0.0113 Tc -0.0695 Tw [(genome. )15.4(Thus, horizontal transfer may be the chance event)]TJ T* 0 Tc 0.008 Tw (that dictates which Class II families survive and which do)Tj T* -0.0004 Tc 0 Tw (not.)Tj 1.8933 -1.2 TD 0 Tc -0.0676 Tw (Extensive genomic data, often in the form of complete)Tj -1.8933 -1.2 TD 0.1288 Tw (genomes, is currently being gathered at an astonishing)Tj T* 0.0145 Tc 0.1389 Tw [(rate. Mining this type of data for )12.8(TEs is sure to bring)]TJ T* 0.0084 Tc (advances on many fronts. For example, it will make it)Tj T* -0.0124 Tc -0.0695 Tw [(possible to objectively assess the distribution of known )11.6(TEs,)]TJ T* -0.0116 Tc -0.0694 Tw (to estimate more reliably the incidence of horizontal transfer)Tj T* 0 Tc 0.0592 Tw [(among them, and to identify new )18.8(TE families. Studies of)]TJ T* -0.0129 Tc -0.0695 Tw (horizontal transfer have practical implications as well. Some)Tj T* 0.0184 Tc 0.139 Tw (TEs, such as )Tj /F3 1 Tf 9 0 1.913 9 117.01 312.675 Tm 0 Tw (piggyBac)Tj /F1 1 Tf 9 0 0 9 155.35 312.675 Tm 0 Tc ( )Tj 0.4354 0 TD 0.0184 Tc 0.139 Tw (and those of the )Tj /F3 1 Tf 9 0 1.913 9 234.13 312.675 Tm 0 Tw [(mariner)18.1(-T)87.5(c1)]TJ /F1 1 Tf 9 0 0 9 56.53 301.875 Tm 0.0113 Tc 0.1389 Tw [(superfamily)70(, are already being used as transformation)]TJ 0 -1.2 TD 0 Tc 0.1071 Tw (vectors in a wide variety of taxa \(Sherman et al., 1998;)Tj T* -0.0076 Tc -0.0694 Tw (Rubin et al., 1999; Mamoun et al., 2000; Zhang et al., 2000;)Tj T* 0 Tc 0.0859 Tw [(Handler)54.4(, 2002\). )14.1(The usefulness of )15.4(TEs in this context is)]TJ T* -0.0198 Tw (phenomenal since, through insertional mutagenesis, they)Tj T* -0.021 Tw (provide a tool to rapidly identify and recover of genes that)Tj T* 0.0415 Tw (contribute of specific phenotypes \(Spradling et al., 1999;)Tj T* 0.1292 Tw (Fischer et al., 2001; Horn et al., 2003\). In addition, the)Tj T* 0.0037 Tc 0.139 Tw [(inherent ability of )15.3(TEs to spread can be explored as a)]TJ T* 0 Tc -0.0029 Tw [(means to transform, and thus, ultimately)70.4(, control, species)]TJ T* 0.0881 Tw (that are involved in the transmission of diseases or that)Tj T* -0.0097 Tc -0.0695 Tw (are, themselves, considered to be pests \(Gueiros-Filho and)Tj T* 0 Tc 0.0004 Tw [(Beverley)70(, 1997; )56.9(Atkinson et al., 2001\).)]TJ 1.8933 -1.2 TD 0.0149 Tc 0.1389 Tw (The success of these elements as transformation)Tj -1.8933 -1.2 TD 0.0092 Tc (vectors rests mainly on two bases: on studies of their)Tj T* -0.0061 Tc -0.0694 Tw (transposition mechanisms that show transposase to be the)Tj T* 0 Tc 0.0841 Tw [(only factor required for transposition. )14.3(This suggests that)]TJ T* -0.0047 Tw (the success of such experiments does not hinge on host-)Tj T* -0.0036 Tc -0.0695 Tw (encoded factors, which might be absent in distantly related)Tj T* 0 Tc 0.0551 Tw [(taxa. )14.5(They also rely on studies of the occurrence of )17.1(TEs)]TJ 27.7267 72.4 TD -0.0062 Tc -0.0695 Tw (that reveal the presence of specific elements across a wide)Tj 0 -1.2 TD 0 Tc -0.0691 Tw (variety of taxa, since this provides circumstantial evidence)Tj T* -0.0033 Tc -0.0695 Tw (for the success of such elements as tools in transformation)Tj T* 0.0359 Tc 0.1389 Tw [(studies. )52.7(Additional studies of horizontal transfer)57.9(, by)]TJ T* 0 Tc 0.0259 Tw (providing further insights into the features of interspecific)Tj T* 0.0573 Tw [(transfer)56.7(, may prove invaluable for the fields of functional)]TJ T* 0.0001 Tw (and medical genomics.)Tj /F2 1 Tf 0 -2.4 TD -0.0001 Tc 0 Tw (Acknowledgements)Tj /F1 1 Tf T* -0.0307 Tc (We)Tj 1.4599 0 TD ( )Tj 0.1991 0 TD -0.0094 Tc -0.0695 Tw (would like to thank Margaret G. Kidwell, David G. Harris)Tj -1.659 -1.2 TD 0 Tc -0.0352 Tw (and Shelby L. Bidwell for critical review of the manuscript,)Tj T* 0.0594 Tc 0.1389 Tw (and for suggestions and lengthy discussions that)Tj T* 0 Tc 0.1293 Tw (significantly contributed to the clarity of the manuscript.)Tj T* 0.0293 Tc 0 Tw (We)Tj 1.5748 0 TD ( )Tj 0.4624 0 TD 0.0455 Tc 0.1389 Tw [(also thank Margaret G. Kidwell and )61.4(Andrew J.)]TJ -2.0371 -1.2 TD 0 Tc -0.0404 Tw [(Holyoake, and Jake )18.8(T)37.7(u)0( and Hongguang Shao for allowing)]TJ T* 0.0004 Tw (us to use their unpublished results.)Tj /F2 1 Tf 0 -2.4 TD 0.0003 Tc 0 Tw (References)Tj /F1 1 Tf T* 0 Tc 0.1237 Tw [(Andrews, J.D., and Gloor)55.4(, G.B. 1995. )59.4(A)53.7( role for the KP)]TJ 0.6267 -1.2 TD 0.1266 Tw (leucine zipper in regulating )Tj /F3 1 Tf 9 0 1.913 9 425.83 521.475 Tm 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 431.83 521.475 Tm ( )Tj 0.4046 0 TD 0.1266 Tw (element transposition in)Tj /F3 1 Tf 9 0 1.913 9 311.71 510.675 Tm -0.001 Tw [(Drosophila melanogaster)34.1(.)]TJ /F1 1 Tf 9 0 0 9 413.89 510.675 Tm -0.0001 Tc -0.0009 Tw ( Genetics)Tj /F3 1 Tf 9 0 1.913 9 451.93 510.675 Tm 0 Tc 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 454.39 510.675 Tm -0.001 Tw (141: 587-594.)Tj -16.48 -1.2 TD 0.0576 Tw (Anxolabhre, D., Kidwell, M.G., and Periquet, G. 1988.)Tj 0.6267 -1.2 TD 0.0223 Tc 0.139 Tw (Molecular characteristics of diverse populations are)Tj T* 0.0021 Tc 0.1389 Tw (consistent with the hypothesis of a recent invasion of)Tj /F3 1 Tf 9 0 1.913 9 311.71 467.475 Tm -0.0104 Tc -0.0694 Tw (Drosophila melanogaster)Tj /F1 1 Tf 9 0 0 9 409.03 467.475 Tm 0 Tc 0 Tw ( )Tj 0.1982 0 TD -0.0104 Tc -0.0694 Tw (by mobile )Tj /F3 1 Tf 9 0 1.913 9 449.59 467.475 Tm 0 Tc 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 455.53 467.475 Tm ( )Tj 0.1982 0 TD -0.0104 Tc -0.0694 Tw (elements. Mol. Biol.)Tj -16.1782 -1.2 TD 0 Tc 0 Tw (Evol.)Tj /F3 1 Tf 9 0 1.913 9 331.69 456.675 Tm ( )Tj /F1 1 Tf 9 0 0 9 334.21 456.675 Tm 0.0003 Tw (5: 252-269.)Tj -3.1267 -1.2 TD 0.0426 Tc 0.1389 Tw (Arca, B., and Savakis, C. 2000. Distribution of the)Tj 0.6267 -1.2 TD 0.0033 Tc (transposable element )Tj /F3 1 Tf 9 0 1.913 9 403.33 435.075 Tm 0 Tw (Minos)Tj /F1 1 Tf 9 0 0 9 427.57 435.075 Tm 0 Tc ( )Tj 0.4202 0 TD 0.0033 Tc 0.1389 Tw (in the genus )Tj /F3 1 Tf 9 0 1.913 9 487.03 435.075 Tm 0 Tw (Drosophila)Tj /F1 1 Tf 9 0 0 9 530.29 435.075 Tm 0 Tc (.)Tj -24.2867 -1.2 TD -0.0011 Tw (Genetica 108: 263-267.)Tj -0.6267 -1.2 TD -0.0026 Tc -0.0694 Tw [(Atkinson, P)126.7(.)0(W)56.8(., Pinkerton, )58.9(A.C., and OBrochta, D.A. 2001.)]TJ 0.6267 -1.2 TD 0 Tc 0.1143 Tw [(Genetic transformation systems in insects. )53.7(Annu. Rev)76.7(.)]TJ T* -0.0005 Tw (Entomol. 46: 317-346.)Tj -0.6267 -1.2 TD 0.0065 Tc 0.139 Tw [(Auge-Gouillou, C., Bigot, )23.2(Y)126.8(., Pollet, N., Hamelin, M.H.,)]TJ 0.6267 -1.2 TD 0 Tc -0.024 Tw (Meunier-Rotival, M., and Periquet, G. 1995. Human and)Tj T* 0.0737 Tw (other mammalian genomes contain transposons of the)Tj /F3 1 Tf 9 0 1.913 9 311.71 348.675 Tm 0 Tw (mariner)Tj /F1 1 Tf 9 0 0 9 342.19 348.675 Tm -0.0002 Tw [( family)68.8(. FEBS Lett.)]TJ /F3 1 Tf 9 0 1.913 9 416.05 348.675 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 418.57 348.675 Tm -0.0002 Tw (368: 541-546.)Tj -12.5 -1.2 TD 0.0653 Tw [(Badge, R.M., and Brookfield, J.F)112.4(. 1997. )20(The role of host)]TJ 0.6267 -1.2 TD -0.0052 Tc -0.0694 Tw (factors in the population dynamics of selfish transposable)Tj T* 0 Tc 0.0004 Tw [(elements. J. )23.2(Theor)45.4(. Biol. 187: 261-271.)]TJ -0.6267 -1.2 TD 0.0322 Tw [(Beall, E.L., )58.5(Admon, )56.2(A., and Rio, D.C. 1994. )48.9(A)53.7( )]TJ /F3 1 Tf 9 0 1.913 9 489.79 305.475 Tm 0 Tw (Drosophila)Tj /F1 1 Tf 9 0 0 9 311.71 294.675 Tm 0.0628 Tw (protein homologous to the human p70 Ku autoimmune)Tj T* -0.011 Tc -0.0695 Tw (antigen interacts with the )Tj /F3 1 Tf 9 0 1.913 9 408.61 283.875 Tm 0 Tc 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 414.49 283.875 Tm ( )Tj 0.1975 0 TD -0.011 Tc -0.0695 Tw (transposable element inverted)Tj -11.6175 -1.2 TD 0 Tc 0.0004 Tw [(repeats. Proc. Natl. )58.3(Acad. Sci. USA. 91: 12681-12685.)]TJ -0.6267 -1.2 TD 0.0083 Tc 0.1389 Tw (Beall, E.L., and Rio, D.C. 1997. )Tj /F3 1 Tf 9 0 1.913 9 443.59 262.275 Tm 0 Tw (Drosophila)Tj /F1 1 Tf 9 0 0 9 487.33 262.275 Tm 0 Tc ( )Tj /F3 1 Tf 9 0 1.913 9 491.23 262.275 Tm (P)Tj /F1 1 Tf 9 0 0 9 497.23 262.275 Tm 0.0083 Tc (-element)Tj -20.6133 -1.2 TD -0.0086 Tc -0.0695 Tw (transposase is a novel site-specific endonuclease. Genes)Tj T* 0 Tc 0 Tw [(Dev)71.3(.)]TJ /F3 1 Tf 9 0 1.913 9 329.53 240.675 Tm ( )Tj /F1 1 Tf 9 0 0 9 332.05 240.675 Tm (1)Tj 0.4867 0 TD 0.0013 Tw (1: 2137-2151.)Tj -3.3733 -1.2 TD 0.0106 Tc 0.1389 Tw (Berg, D.E., and Howe, M.M., eds. 1989. Mobile DNA.)Tj 0.6267 -1.2 TD 0 Tc 0.0003 Tw [(American Society of Microbiology)69.8(, W)40.4(ashington, D.C.)]TJ -0.6267 -1.2 TD 0.1149 Tw [(Bimont, C., V)16.8(ieira, C., Borie, N., and Lepetit, D. 1999.)]TJ 0.6267 -1.2 TD 0 Tw (T)Tj 0.5733 0 TD -0.0409 Tw (ransposable elements and genome evolution: the case)Tj -0.5733 -1.2 TD 0 Tw (of )Tj /F3 1 Tf 9 0 1.913 9 321.73 186.675 Tm 0.0001 Tw (Drosophila simulans)Tj /F1 1 Tf 9 0 0 9 402.73 186.675 Tm (. Genetica)Tj /F3 1 Tf 9 0 1.913 9 443.77 186.675 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 446.23 186.675 Tm 0.0001 Tw [(107: 1)66.8(13-120.)]TJ -15.5733 -1.2 TD 0.0413 Tc 0.1389 Tw [(Bimont, C., V)23(ieira, C., Hoogland, C., Cizeron, G.,)]TJ 0.6267 -1.2 TD 0.0019 Tc [(Loevenbruck, C., )53.7(Arnault, C., and Carante, J.P)134.7(. 1997.)]TJ T* 0 Tc 0.1291 Tw (Maintenance of transposable element copy number in)Tj T* 0.0642 Tw (natural populations of )Tj /F3 1 Tf 9 0 1.913 9 402.01 143.475 Tm (Drosophila melanogaster)Tj /F1 1 Tf 9 0 0 9 502.63 143.475 Tm 0 Tw ( )Tj 0.3422 0 TD (and )Tj /F3 1 Tf 9 0 1.913 9 523.81 143.475 Tm (D.)Tj -23.3116 -1.2 TD (simulans)Tj /F1 1 Tf 9 0 0 9 347.23 132.675 Tm -0.0012 Tw (. Genetica)Tj /F3 1 Tf 9 0 1.913 9 388.21 132.675 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 390.73 132.675 Tm -0.0012 Tw (100: 161-166.)Tj -9.4067 -1.2 TD -0.0055 Tc -0.0695 Tw [(Black, D.M., Jackson, M.S., Kidwell, M.G., and Dover)57.6(, G.A.)]TJ 0.6267 -1.2 TD -0.0027 Tc 0 Tw (1987. )Tj /F3 1 Tf 9 0 1.913 9 335.95 111.075 Tm (KP)Tj /F1 1 Tf 9 0 0 9 347.89 111.075 Tm 0 Tc ( )Tj 0.2058 0 TD -0.0027 Tc -0.0695 Tw (elements repress )Tj /F3 1 Tf 9 0 1.913 9 419.59 111.075 Tm 0 Tc 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 425.59 111.075 Tm -0.0027 Tc -0.0695 Tw (-induced hybrid dysgenesis)Tj -12.6533 -1.2 TD 0 Tc 0 Tw (in )Tj /F3 1 Tf 9 0 1.913 9 321.13 100.275 Tm -0.0095 Tw (Drosophila melanogaster)Tj /F1 1 Tf 9 0 0 9 421.09 100.275 Tm (. EMBO J. 6: 4125-4135.)Tj ET endstream endobj 34 0 obj << /Type /Page /Parent 95 0 R /Resources 35 0 R /Contents 36 0 R /Thumb 76 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 35 0 obj << /ProcSet [ /PDF /Text ] /Font << /F1 114 0 R /F2 113 0 R /F3 128 0 R >> /ExtGState << /GS1 139 0 R /GS2 138 0 R >> /ColorSpace << /Cs8 112 0 R >> >> endobj 36 0 obj << /Length 17018 >> stream BT /F1 1 Tf 9 0 0 9 337.47 780.5551 Tm 0 0 0 1 k /GS2 gs 0 Tc -0.0155 Tw [(Horizontal Transfer of Transposable Elements 11)]TJ /F2 1 Tf 37.9351 29.4096 -29.4096 37.9351 42.9423 542.4378 Tm 2 Tr 0 0 0 0.45 K 0 J 0 j 0.576 w 10 M []0 d /Cs8 cs 0 scn /GS1 gs 0.0686 Tc -0.0001 Tw (PAGE PROOFS)Tj /F1 1 Tf 9 0 0 9 62.19 748.275 Tm 0 Tr 0 0 0 1 k /GS2 gs -0.0125 Tc -0.0694 Tw [(Brookfield, J.F)114.3(., and Badge, R.M. 1997. Population genetics)]TJ 0.6267 -1.2 TD 0 Tc 0.1384 Tw (models of transposable elements. Genetica)Tj /F3 1 Tf 9 0 1.913 9 245.97 737.475 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 249.63 737.475 Tm 0.1384 Tw (100: 281-)Tj -20.2 -1.2 TD -0.0006 Tc 0 Tw (294.)Tj -0.6267 -1.2 TD 0.031 Tc 0.1389 Tw [(Brunet, F)110.7(., Godin, F)114.3(., Bazin, C., and Capy)70.9(, P)128.2(.)0( 1999.)]TJ 0.6267 -1.2 TD -0.0129 Tc -0.0695 Tw (Phylogenetic analysis of )Tj /F3 1 Tf 9 0 1.913 9 162.09 705.0751 Tm 0 Tw (Mos1)Tj /F1 1 Tf 9 0 0 9 183.63 705.0751 Tm -0.0695 Tw (-like transposable elements)Tj -12.8667 -1.2 TD 0 Tc -0.0001 Tw (in the )Tj /F3 1 Tf 9 0 1.913 9 92.37 694.275 Tm 0 Tw (Drosophilidae)Tj /F1 1 Tf 9 0 0 9 147.39 694.275 Tm -0.0001 Tw (. J. Mol. Evol. 49: 760-768.)Tj -9.4667 -1.2 TD 0.0014 Tw [(Brunet, F)107.7(., Godin, F)118.5(., David, J.R., and Capy)72.3(, P)124.4(.)0( 1994. )18.8(The)]TJ /F3 1 Tf 9 0 1.913 9 67.83 672.675 Tm -0.0081 Tc 0 Tw (mariner)Tj /F1 1 Tf 9 0 0 9 97.83 672.675 Tm 0 Tc ( )Tj 0.2004 0 TD -0.0081 Tc -0.0695 Tw (transposable element in the )Tj /F3 1 Tf 9 0 1.913 9 208.17 672.675 Tm 0 Tw (Drosophilidae)Tj /F1 1 Tf 9 0 0 9 262.23 672.675 Tm 0 Tc ( )Tj 0.2004 0 TD -0.0081 Tc [(family)69.3(.)]TJ -21.8004 -1.2 TD 0 Tc (Heredity)Tj /F3 1 Tf 9 0 1.913 9 101.37 661.875 Tm ( )Tj /F1 1 Tf 9 0 0 9 103.83 661.875 Tm -0.0003 Tw (73: 377-385.)Tj -4.6267 -1.2 TD 0.0764 Tw [(Calvi, B.R., Hong, )14.3(T)111(.J., Findley)78.1(, S.D., and Gelbart, W)54.4(.M.)]TJ 0.6267 -1.2 TD 0.0164 Tc 0.1389 Tw (1991. Evidence for a common evolutionary origin of)Tj T* 0.001 Tc (inverted repeat transposons in )Tj /F3 1 Tf 9 0 1.913 9 196.71 629.475 Tm 0 Tw (Drosophila)Tj /F1 1 Tf 9 0 0 9 239.79 629.475 Tm 0 Tc ( )Tj 0.4179 0 TD 0.001 Tc 0.1389 Tw (and plants:)Tj /F3 1 Tf 9 0 1.913 9 67.83 618.675 Tm 0 Tc 0 Tw (hobo)Tj /F1 1 Tf 9 0 0 9 87.87 618.675 Tm (, )Tj /F3 1 Tf 9 0 1.913 9 92.73 618.675 Tm (Activator)Tj /F1 1 Tf 9 0 0 9 127.77 618.675 Tm -0.0153 Tw (, and )Tj /F3 1 Tf 9 0 1.913 9 149.97 618.675 Tm 0 Tw (T)Tj 0.52 0 TD (am3)Tj /F1 1 Tf 9 0 0 9 172.17 618.675 Tm -0.0153 Tw (. Cell)Tj /F3 1 Tf 9 0 1.913 9 192.57 618.675 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 194.91 618.675 Tm -0.0153 Tw (66: 465-471.)Tj -14.7467 -1.2 TD -0.0003 Tc -0.0695 Tw [(Capy)72.7(, P)125.9(.)0( 1998. Classification of transposable elements. In:)]TJ 0.6267 -1.2 TD 0 Tc 0.0583 Tw [(Dynamics )52(And Evolution Of )16.9(T)37.7(ransposable Elements. P)126(.)]TJ T* 0.0778 Tw [(Capy)74(, C. Bazin, D. Higuet, and )14.4(T)111(.)0( Langin, eds. Landes)]TJ T* -0.0007 Tw [(Bioscience, )57(Austin. p. 37-52.)]TJ -0.6267 -1.2 TD 0.0125 Tc 0.139 Tw [(Capy)70.8(, P)126.2(., )63.9(Anxolabhre, D., and Langin, )11.2(T)110.2(.)0( 1994. )20.9(The)]TJ 0.6267 -1.2 TD 0.0306 Tc 0.1389 Tw (strange phylogenies of transposable elements: are)Tj T* 0 Tc -0.047 Tw [(horizontal transfers the only explanation? )14.2(T)37.7(rends Genet.)]TJ T* 0.0027 Tw (10: 7-12.)Tj -0.6267 -1.2 TD 0.0366 Tw [(Capy)74(, P)132.9(., V)10.9(italis, R., Langin, )19.9(T)111(., Higuet, D., and Bazin, C.)]TJ 0.6267 -1.2 TD 0.0173 Tc 0.1389 Tw (1996. Relationships between transposable elements)Tj T* 0 Tc -0.0655 Tw (based upon the integrase-transposase domains: is there)Tj T* 0.0001 Tw (a common ancestor? J. Mol. Evol. 42: 359-368.)Tj -0.6267 -1.2 TD 0.048 Tc 0.1389 Tw [(Charlesworth, B., and Charlesworth, D. 1983. )11.8(The)]TJ 0.6267 -1.2 TD 0 Tc 0.0882 Tw (population dynamics of transposable elements. Genet.)Tj T* 0.001 Tw (Res. 42: 1-27.)Tj -0.6267 -1.2 TD 0.0137 Tc 0.1389 Tw [(Charlesworth, B., and Langley)69.1(, C.H. 1991. Population)]TJ 0.6267 -1.2 TD 0.0152 Tc (genetics of transposable elements in )Tj /F3 1 Tf 9 0 1.913 9 227.73 435.075 Tm 0 Tw (Drosophila)Tj /F1 1 Tf 9 0 0 9 272.13 435.075 Tm 0.1389 Tw (. In:)Tj -22.7 -1.2 TD 0 Tc 0.1133 Tw [(Evolution )51(At )23(The Molecular Level. R.K. Selander)50.8(, )56(A.G.)]TJ T* 0.0582 Tw [(Clark, and )18.1(T)111(.S. Whittam, eds. Sinauer )55.6(Associates, Inc.,)]TJ T* 0.0001 Tc 0 Tw (Sunderland.)Tj -0.6267 -1.2 TD -0.0105 Tc -0.0694 Tw [(Charlesworth, B., and Lapid, )54.1(A. 1989. )50(A)56.5( study of ten families)]TJ 0.6267 -1.2 TD 0.0089 Tc 0.1389 Tw (of transposable elements on X chromosomes from a)Tj T* 0 Tc -0.0192 Tw (population of )Tj /F3 1 Tf 9 0 1.913 9 121.53 370.275 Tm (Drosophila melanogaster)Tj /F1 1 Tf 9 0 0 9 221.43 370.275 Tm (. Genet. Res. 54:)Tj -17.0667 -1.2 TD 0 Tw (1)Tj 0.4867 0 TD -0.0002 Tc (13-125.)Tj -1.1133 -1.2 TD 0 Tc 0.132 Tw [(Clark, J.B., )52.1(Altheide, )21(T)111(.K., Schlosser)54.4(, M.J., and Kidwell,)]TJ 0.6267 -1.2 TD 0.039 Tc 0.1389 Tw (M.G. 1995. Molecular evolution of )Tj /F3 1 Tf 9 0 1.913 9 223.11 337.875 Tm 0 Tc 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 229.47 337.875 Tm ( )Tj 0.4559 0 TD 0.039 Tc (transposable)Tj -18.4159 -1.2 TD 0.0025 Tc 0.1389 Tw [(elements in the genus Drosophila. I. )15.1(The )]TJ /F3 1 Tf 9 0 1.913 9 241.47 327.075 Tm 0 Tw (saltans)Tj /F1 1 Tf 9 0 0 9 270.09 327.075 Tm 0 Tc ( )Tj 0.4194 0 TD 0.0025 Tc (and)Tj /F3 1 Tf 9 0 1.913 9 67.83 316.275 Tm 0 Tc (willistoni)Tj /F1 1 Tf 9 0 0 9 101.37 316.275 Tm -0.0001 Tw ( species groups. Mol. Biol. Evol.)Tj /F3 1 Tf 9 0 1.913 9 228.87 316.275 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 231.39 316.275 Tm -0.0001 Tw (12: 902-913.)Tj -18.8 -1.2 TD 0.0342 Tc 0.1389 Tw [(Clark, J.B., and Kidwell, M.G. 1997. )54.2(A)54.5( phylogenetic)]TJ 0.6267 -1.2 TD 0.0226 Tc (perspective on )Tj /F3 1 Tf 9 0 1.913 9 134.43 294.675 Tm 0 Tc 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 140.67 294.675 Tm ( )Tj 0.4395 0 TD 0.0226 Tc 0.1389 Tw (transposable element evolution in)Tj -8.5329 -1.2 TD -0.0047 Tc -0.0694 Tw [(Drosophila. Proc. Natl. )53.6(Acad. Sci. USA. 94: 1)73.1(1428-1)71.5(1433.)]TJ -0.6267 -1.2 TD 0 Tc 0.0185 Tw [(Clark, J.B., Kim, P)128.6(.C., and Kidwell, M.G. 1998. Molecular)]TJ 0.6267 -1.2 TD 0.0306 Tc 0.1389 Tw (evolution of )Tj /F3 1 Tf 9 0 1.913 9 122.43 262.275 Tm 0 Tc 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 128.73 262.275 Tm ( )Tj 0.4475 0 TD 0.0306 Tc 0.1389 Tw (transposable elements in the genus)Tj -7.2142 -1.2 TD 0.0003 Tc [(Drosophila. III. )15.1(The )]TJ /F3 1 Tf 9 0 1.913 9 150.03 251.475 Tm 0 Tw (melanogaster)Tj /F1 1 Tf 9 0 0 9 204.57 251.475 Tm 0 Tc ( )Tj 0.4172 0 TD 0.0003 Tc 0.1389 Tw (species group. Mol.)Tj -15.6106 -1.2 TD 0 Tc -0.0003 Tw (Biol. Evol.)Tj /F3 1 Tf 9 0 1.913 9 107.85 240.675 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 110.37 240.675 Tm -0.0003 Tw (15: 746-755.)Tj -5.3533 -1.2 TD 0.0198 Tc 0.1389 Tw [(Clark, J.B., Maddison, W)54.2(.)0(P)131.2(., and Kidwell, M.G. 1994.)]TJ 0.6267 -1.2 TD 0 Tc 0.0831 Tw (Phylogenetic analysis supports horizontal transfer of )Tj /F3 1 Tf 9 0 1.913 9 282.93 219.075 Tm 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 67.83 208.275 Tm -0.0007 Tw (transposable elements. Mol. Biol. Evol.)Tj /F3 1 Tf 9 0 1.913 9 222.87 208.275 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 225.39 208.275 Tm (1)Tj 0.4867 0 TD -0.0007 Tw (1: 40-50.)Tj -18.62 -1.2 TD -0.0047 Tw (Clark, J.B., Silva, J.C., and Kidwell, M.G. 2002. Evidence)Tj 0.6267 -1.2 TD 0.0078 Tc 0.1389 Tw (of horizontal transfer of )Tj /F3 1 Tf 9 0 1.913 9 169.23 186.675 Tm 0 Tc 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 175.29 186.675 Tm ( )Tj 0.4247 0 TD 0.0078 Tc 0.1389 Tw (transposable elements. In:)Tj -12.3647 -1.2 TD 0 Tc 0.0949 Tw [(Horizontal Gene )12.9(T)37.7(ransfer)58.7(. M. Syvanen, and C.I. Kado,)]TJ T* -0.0001 Tw [(eds. )54.6(Academic Press, San Diego. p. 161-171.)]TJ -0.6267 -1.2 TD -0.008 Tc -0.0694 Tw [(Cummings, M.P)125.8(. 1994. )20.1(T)36.3(ransmission patterns of eukaryotic)]TJ 0.6267 -1.2 TD 0.0348 Tc 0.1389 Tw (transposable elements: arguments for and against)Tj T* 0 Tc -0.0003 Tw [(horizontal transfer)49.5(. )15.7(T)44.3(rends Ecol. Evol. 9: 141-145.)]TJ -0.6267 -1.2 TD 0.0113 Tw [(Dai, L., and Zimmerly)75.9(, S. 2002. Compilation and analysis)]TJ 0.6267 -1.2 TD -0.0132 Tc -0.0695 Tw (of group II intron insertions in bacterial genomes: evidence)Tj T* 0 Tc 0.0156 Tw [(for retroelement behavior)49(. Nucleic )56.6(Acids Res. 30: 1091-)]TJ T* 0 Tw (1)Tj 0.4867 0 TD -0.0002 Tc (102.)Tj 26.6067 73.2 TD 0.0241 Tc 0.1389 Tw [(Daniels, S.B., Chovnick, )56.1(A., and Boussy)74.3(, I.A. 1990a.)]TJ 0.6333 -1.2 TD -0.0128 Tc -0.0694 Tw (Distribution of the )Tj /F3 1 Tf 9 0 1.913 9 385.71 737.475 Tm 0 Tw (hobo)Tj /F1 1 Tf 9 0 0 9 405.27 737.475 Tm 0 Tc ( )Tj 0.1958 0 TD -0.0128 Tc -0.0694 Tw (transposable element in the genus)Tj /F3 1 Tf 9 0 1.913 9 317.37 726.675 Tm 0 Tc 0 Tw (Drosophila)Tj /F1 1 Tf 9 0 0 9 360.33 726.675 Tm -0.0007 Tw (. Mol. Biol. Evol.)Tj /F3 1 Tf 9 0 1.913 9 424.89 726.675 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 427.35 726.675 Tm -0.0007 Tw (7: 589-606.)Tj -12.8533 -2.4 TD -0.0437 Tw (Daniels, S.B., Peterson, K.R., Strausbaugh, L.D., Kidwell,)Tj 0.6333 -1.2 TD 0.079 Tw [(M.G., and Chovnick, )60.8(A. 1990b. Evidence for horizontal)]TJ T* 0.0102 Tc 0.1389 Tw (transmission of the)Tj /F3 1 Tf 9 0 1.913 9 397.11 683.475 Tm 0.1491 Tc 0 Tw ( P)Tj /F1 1 Tf 9 0 0 9 407.07 683.475 Tm 0 Tc ( )Tj 0.4271 0 TD 0.0102 Tc 0.1389 Tw (transposable element between)Tj /F3 1 Tf 9 0 1.913 9 317.37 672.675 Tm 0 Tc 0 Tw (Drosophila)Tj /F1 1 Tf 9 0 0 9 360.33 672.675 Tm -0.0001 Tw ( species. Genetics)Tj /F3 1 Tf 9 0 1.913 9 433.89 672.675 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 436.41 672.675 Tm -0.0001 Tw (124: 339-355.)Tj -13.86 -1.2 TD -0.0192 Tw [(Doolittle, W)52.8(.)0(F)109(., and Sapienza, C. 1980. Selfish genes, the)]TJ 0.6333 -1.2 TD -0.0007 Tc -0.0694 Tw (phenotype paradigm and genome evolution. Nature)Tj /F3 1 Tf 9 0 1.913 9 519.09 651.075 Tm 0 Tc 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 520.95 651.075 Tm -0.0007 Tc (284:)Tj -22.62 -1.2 TD 0.0003 Tc (601-603.)Tj -0.6333 -1.2 TD 0.0517 Tc 0.1389 Tw [(Eickbush, D.G., and Eickbush, )15.9(T)109.4(.H. 1995. V)55.7(ertical)]TJ 0.6333 -1.2 TD 0 Tc 0.046 Tw (transmission of the retrotransposable elements )Tj /F3 1 Tf 9 0 1.913 9 509.01 618.675 Tm 0 Tw (R1)Tj /F1 1 Tf 9 0 0 9 520.47 618.675 Tm ( )Tj 0.324 0 TD (and)Tj /F3 1 Tf 9 0 1.913 9 317.37 607.875 Tm (R2)Tj /F1 1 Tf 9 0 0 9 328.83 607.875 Tm ( )Tj 0.2933 0 TD 0.0153 Tw (during the evolution of the )Tj /F3 1 Tf 9 0 1.913 9 438.27 607.875 Tm (Drosophila melanogaster)Tj /F1 1 Tf 9 0 0 9 317.37 597.075 Tm -0.0003 Tw (species subgroup. Genetics)Tj /F3 1 Tf 9 0 1.913 9 428.37 597.075 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 430.89 597.075 Tm -0.0003 Tw (139: 671-684.)Tj -13.2467 -1.2 TD 0.0476 Tc 0.1389 Tw [(Engels, W)51.2(.)0( 1979. Hybrid dysgenesis in )]TJ /F3 1 Tf 9 0 1.913 9 491.55 586.275 Tm 0 Tw (Drosophila)Tj -19.0983 -1.2 TD 0.0127 Tc (melanogaster)Tj /F1 1 Tf 9 0 0 9 373.23 575.475 Tm 0.1389 Tw [(: rules of inheritance of female sterility)70.5(.)]TJ -6.2067 -1.2 TD 0 Tc -0.0006 Tw (Genet. Res. 33: 219-236.)Tj -0.6333 -1.2 TD -0.0536 Tw [(Engels, W)50.1(.)0( 1989. )]TJ /F3 1 Tf 9 0 1.913 9 380.79 553.875 Tm 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 386.79 553.875 Tm ( )Tj 0.2244 0 TD -0.0536 Tw (elements in )Tj /F3 1 Tf 9 0 1.913 9 436.41 553.875 Tm (Drosophila melanogaster)Tj /F1 1 Tf 9 0 0 9 535.9501 553.875 Tm 0 Tw (.)Tj -24.2867 -1.2 TD 0.0408 Tc 0.1389 Tw (In: Mobile DNA. D.E. Berg, and M.M. Howe, eds.)Tj T* 0 Tc 0.065 Tw [(American Society of Microbiology)77.1(, W)31.7(ashington, D.C. p.)]TJ T* 0.0003 Tc 0 Tw (437-483.)Tj -0.6333 -1.2 TD 0 Tc -0.0643 Tw [(Engels, W)52.7(.R. 1992. )14.1(The origin of )]TJ /F3 1 Tf 9 0 1.913 9 440.13 510.675 Tm 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 446.13 510.675 Tm ( )Tj 0.2137 0 TD -0.0643 Tw (elements in )Tj /F3 1 Tf 9 0 1.913 9 495.45 510.675 Tm 0 Tw (Drosophila)Tj -19.5316 -1.2 TD (melanogaster)Tj /F1 1 Tf 9 0 0 9 371.91 499.875 Tm -0.0164 Tw (. Bioessays)Tj /F3 1 Tf 9 0 1.913 9 417.75 499.875 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 420.09 499.875 Tm -0.0164 Tw (14: 681-686.)Tj -12.0467 -1.2 TD 0.0331 Tc 0.1389 Tw [(Finnegan, D. 1992. )14.6(T)37.4(ransposable elements. In: )17.7(The)]TJ 0.6333 -1.2 TD 0 Tc -0.0437 Tw (Genome of )Tj /F3 1 Tf 9 0 1.913 9 363.57 478.275 Tm (Drosophila melanogaster)Tj /F1 1 Tf 9 0 0 9 463.23 478.275 Tm [(. D.L. Lindsley)68.7(, and)]TJ -16.2067 -1.2 TD -0.0007 Tc -0.0695 Tw [(G. Zimm, eds. )58.6(Academic Press, New )15.3(Y)93(ork. p. 1092-1)74.4(107.)]TJ -0.6333 -1.2 TD 0 Tc 0.125 Tw (Finnegan, D.J. 1989. Eukaryotic transposable elements)Tj 0.6333 -1.2 TD 0.0002 Tw [(and genome evolution. )22.3(T)31(rends Genet. 5: 103-107.)]TJ -0.6333 -1.2 TD 0.0071 Tc 0.1389 Tw [(Fischer)54.6(, S.E., W)-5.3(ienholds, E., and Plasterk, R.H. 2001.)]TJ 0.6333 -1.2 TD -0.007 Tc -0.0695 Tw (Regulated transposition of a fish transposon in the mouse)Tj T* 0 Tc -0.0001 Tw [(germ line. Proc. Natl. )53.6(Acad. Sci. USA. 98: 6759-6764.)]TJ -0.6333 -1.2 TD -0.0103 Tc -0.0695 Tw [(Fraser)53.7(, M.J., Brusca, J.S., Smith, G.E., and Summers, M.D.)]TJ 0.6333 -1.2 TD 0.0695 Tc 0.343 Tw [(1985. )19.8(T)33.8(ransposon-mediated mutagenesis of a)]TJ T* 0 Tc 0.0009 Tw [(baculovirus. V)20.9(irology)]TJ /F3 1 Tf 9 0 1.913 9 400.23 381.075 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 402.75 381.075 Tm 0.0009 Tw (145: 356-361.)Tj -10.12 -1.2 TD -0.0215 Tw [(Frissen, N., Brandes, )52.3(A., and Helsop-Harrison, J.S. 2001.)]TJ 0.6333 -1.2 TD 0.0069 Tc 0.1389 Tw [(Diversity)75.2(, origin, and distribution of retrotranspososns)]TJ T* 0 Tc 0 Tw (\()Tj /F3 1 Tf 9 0 1.913 9 320.37 348.675 Tm (gypsy)Tj /F1 1 Tf 9 0 0 9 343.83 348.675 Tm ( )Tj 0.3046 0 TD (and )Tj /F3 1 Tf 9 0 1.913 9 364.35 348.675 Tm (copia)Tj /F1 1 Tf 9 0 0 9 385.83 348.675 Tm 0.0266 Tw (\) in conifers. Mol. Biol. Evol.)Tj /F3 1 Tf 9 0 1.913 9 498.09 348.675 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 500.85 348.675 Tm 0.0266 Tw [(18: 1)70.7(176-)]TJ -20.3867 -1.2 TD 0 Tw (1)Tj 0.48 0 TD -0.0002 Tc (188.)Tj -1.1133 -1.2 TD 0 Tc 0.0374 Tw [(Garcia-Fernandez, J., Bayascas-Ramirez, J.R., Marfany)70(,)]TJ 0.6333 -1.2 TD -0.0109 Tc -0.0695 Tw [(G., Munoz-Marmol, )59.6(A.M., Casali, )54.2(A., Baguna, J., and Salo,)]TJ T* 0 Tc -0.0254 Tw (E. 1995. High copy number of highly similar )Tj /F3 1 Tf 9 0 1.913 9 491.61 305.475 Tm 0 Tw [(mariner)15.7(-)]TJ /F1 1 Tf 9 0 0 9 524.97 305.475 Tm (like)Tj -23.0667 -1.2 TD 0.0329 Tw (transposons in planarian \()Tj /F3 1 Tf 9 0 1.913 9 421.77 294.675 Tm 0 Tw (Platyhelminthe)Tj /F1 1 Tf 9 0 0 9 480.87 294.675 Tm 0.0329 Tw (\): evidence for)Tj -18.1667 -1.2 TD -0.0695 Tw [(a trans-phyla horizontal transfer)52(. Mol. Biol. Evol.)]TJ /F3 1 Tf 9 0 1.913 9 504.21 283.875 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 506.07 283.875 Tm -0.0695 Tw (12: 421-)Tj -20.9667 -1.2 TD -0.0006 Tc 0 Tw (431.)Tj -0.6333 -1.2 TD 0 Tc -0.0338 Tw [(Gloor)51.7(, G.B., Preston, C.R., Johnson-Schlitz, D.M., Nassif,)]TJ 0.6333 -1.2 TD 0.0038 Tc 0.1389 Tw [(N.A., Phillis, R.W)58.2(., Benz, W)55.5(.K., Robertson, H.M., and)]TJ T* 0.0212 Tc [(Engels, W)53.4(.R. 1993. )25.9(T)52.2(ype I repressors of )]TJ /F3 1 Tf 9 0 1.913 9 495.15 240.675 Tm 0 Tc 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 501.33 240.675 Tm ( )Tj 0.4381 0 TD 0.0212 Tc (element)Tj -20.8781 -1.2 TD 0 Tc 0.0002 Tw [(mobility)75.7(. Genetics)]TJ /F3 1 Tf 9 0 1.913 9 387.69 229.875 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 390.21 229.875 Tm 0.0002 Tw (135: 81-95.)Tj -8.7267 -1.2 TD 0.0317 Tc 0.1389 Tw [(Gomulski, L.M., )15.5(T)109.4(orti, C., Bonizzoni, M., Moralli, D.,)]TJ 0.6333 -1.2 TD 0 Tc -0.0371 Tw [(Raimondi, E., Capy)73.3(, P)132.6(., Gasperi, G., and Malacrida, )53.7(A.R.)]TJ T* 0.0136 Tc 0.1389 Tw [(2001. )60.4(A)53.9( new basal subfamily of )]TJ /F3 1 Tf 9 0 1.913 9 454.71 197.475 Tm 0 Tw (mariner)Tj /F1 1 Tf 9 0 0 9 486.09 197.475 Tm 0 Tc ( )Tj 0.4305 0 TD 0.0136 Tc 0.1389 Tw (elements in)Tj /F3 1 Tf 9 0 1.913 9 317.37 186.675 Tm 0 Tc 0.068 Tw (Ceratitis rosa)Tj /F1 1 Tf 9 0 0 9 371.01 186.675 Tm 0 Tw ( )Tj 0.346 0 TD 0.068 Tw (and other tephritid flies. J. Mol. Evol. 53:)Tj -6.306 -1.2 TD 0.0003 Tc 0 Tw (597-606.)Tj -0.6333 -1.2 TD 0 Tc 0.1289 Tw [(Gonzalez, P)122.6(., and Lessios, H.A. 1999. Evolution of sea)]TJ 0.6333 -1.2 TD -0.0552 Tw (urchin retroviral-like \(SURL\) elements: evidence from 40)Tj T* -0.0001 Tw (echinoid species. Mol. Biol. Evol.)Tj /F3 1 Tf 9 0 1.913 9 448.41 143.475 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 450.87 143.475 Tm -0.0001 Tw (16: 938-952.)Tj -15.4667 -1.2 TD -0.0012 Tc -0.0695 Tw [(Good, )51.8(A.G., Meister)56.1(, G.A., Brock, H.W)58.4(., Grigliatti, )12.8(T)109.8(.A., and)]TJ 0.6333 -1.2 TD 0.0229 Tc 0.1389 Tw [(Hickey)70.9(, D.A. 1989. Rapid spread of transposable )]TJ /F3 1 Tf 9 0 1.913 9 532.47 121.875 Tm 0 Tc 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 317.37 111.075 Tm 0.0243 Tc 0.1389 Tw (elements in experimental populations of )Tj /F3 1 Tf 9 0 1.913 9 493.47 111.075 Tm 0 Tw (Drosophila)Tj -19.3116 -1.2 TD 0 Tc (melanogaster)Tj /F1 1 Tf 9 0 0 9 371.91 100.275 Tm -0.0184 Tw (. Genetics)Tj /F3 1 Tf 9 0 1.913 9 412.23 100.275 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 414.57 100.275 Tm -0.0184 Tw (122: 387-396.)Tj ET endstream endobj 37 0 obj << /Type /Page /Parent 95 0 R /Resources 38 0 R /Contents 39 0 R /Thumb 78 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 38 0 obj << /ProcSet [ /PDF /Text ] /Font << /F1 114 0 R /F2 113 0 R /F3 128 0 R >> /ExtGState << /GS1 139 0 R /GS2 138 0 R >> /ColorSpace << /Cs8 112 0 R >> >> endobj 39 0 obj << /Length 16999 >> stream BT /F1 1 Tf 9 0 0 9 55.93 779.115 Tm 0 0 0 1 k /GS2 gs -0.0001 Tc -0.0003 Tw (12 Silva )Tj /F3 1 Tf 9 0 1.913 9 95.47 779.115 Tm 0 Tc (et al)Tj /F1 1 Tf 9 0 0 9 112.45 779.115 Tm 0 Tw (.)Tj /F2 1 Tf 37.9351 29.4096 -29.4096 37.9351 34.496 531.1378 Tm 2 Tr 0 0 0 0.45 K 0 J 0 j 0.576 w 10 M []0 d /Cs8 cs 0 scn /GS1 gs 0.0686 Tc -0.0001 Tw (PAGE PROOFS)Tj /F1 1 Tf 9 0 0 9 56.53 748.275 Tm 0 Tr 0 0 0 1 k /GS2 gs 0.0279 Tc 0.139 Tw [(Gueiros-Filho, F)107.4(.J., and Beverley)74.2(, S.M. 1997. )23.4(T)32.2(r)0(ans-)]TJ 0.6333 -1.2 TD -0.0016 Tc -0.0694 Tw (kingdom transposition of the Drosophila element )Tj /F3 1 Tf 9 0 1.913 9 252.91 737.475 Tm 0 Tw (mariner)Tj /F1 1 Tf 9 0 0 9 62.23 726.675 Tm 0.0044 Tc 0.1389 Tw (within the protozoan )Tj /F3 1 Tf 9 0 1.913 9 149.83 726.675 Tm 0 Tw (Leishmania)Tj /F1 1 Tf 9 0 0 9 196.27 726.675 Tm 0.1389 Tw (. Science)Tj /F3 1 Tf 9 0 1.913 9 234.85 726.675 Tm 0 Tc 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 238.63 726.675 Tm 0.0044 Tc 0.1389 Tw (276: 1716-)Tj -19.6 -1.2 TD -0.0006 Tc 0 Tw (1719.)Tj -0.6333 -1.2 TD -0.0099 Tc -0.0694 Tw [(Hagemann, S., Haring, E., and Pinsker)50.7(, W)54.2(.)0( 1996. Repeated)]TJ 0.6333 -1.2 TD -0.0119 Tc (horizontal transfer of )Tj /F3 1 Tf 9 0 1.913 9 142.39 694.275 Tm 0 Tc 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 148.33 694.275 Tm ( )Tj 0.1967 0 TD -0.0119 Tc -0.0694 Tw (transposons between )Tj /F3 1 Tf 9 0 1.913 9 234.73 694.275 Tm 0 Tw (Scaptomyza)Tj -18.9116 -1.2 TD 0 Tc (pallida)Tj /F1 1 Tf 9 0 0 9 88.21 683.475 Tm -0.0001 Tc -0.0006 Tw ( and )Tj /F3 1 Tf 9 0 1.913 9 108.25 683.475 Tm 0 Tc (Drosophila bifasciata)Tj /F1 1 Tf 9 0 0 9 191.77 683.475 Tm (. Genetica)Tj /F3 1 Tf 9 0 1.913 9 232.81 683.475 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 235.33 683.475 Tm -0.0007 Tw (98: 43-51.)Tj -19.8667 -1.2 TD 0.0449 Tc 0.1389 Tw [(Hagemann, S., Miller)52.1(, W)53.6(.J., and Pinsker)55.1(, W)53.6(.)0( 1992.)]TJ 0.6333 -1.2 TD 0 Tc -0.049 Tw (Identification of a complete )Tj /F3 1 Tf 9 0 1.913 9 169.99 661.875 Tm 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 175.99 661.875 Tm -0.049 Tw (-elements in the genome of)Tj /F3 1 Tf 9 0 1.913 9 62.23 651.075 Tm -0.0003 Tw (Drosophila bifasciata)Tj /F1 1 Tf 9 0 0 9 145.75 651.075 Tm [(. Nucleic )58.1(Acids Res. 20: 409-413.)]TJ -9.9133 -1.2 TD 0.1292 Tw [(Hagemann, S., Miller)54.5(, W)49.2(.J., and Pinsker)57.2(, W)55.9(.)0( 1994. )14.5(T)57.7(w)0(o)]TJ 0.6333 -1.2 TD 0.0586 Tc 0 Tw (distinct )Tj /F3 1 Tf 9 0 1.913 9 98.71 629.475 Tm 0 Tc (P)Tj /F1 1 Tf 9 0 0 9 105.25 629.475 Tm ( )Tj 0.4755 0 TD 0.0586 Tc 0.1389 Tw (element subfamilies in the genome of)Tj /F3 1 Tf 9 0 1.913 9 62.23 618.675 Tm 0 Tc 0.0005 Tw (Drosophila bifasciata)Tj /F1 1 Tf 9 0 0 9 145.75 618.675 Tm (. Mol. Gen. Genet. 244: 168-175.)Tj -9.9133 -1.2 TD 0.037 Tw [(Hamada, M., Kido, )16.7(Y)127(., Himberg, M., Reist, J.D., )14.7(Y)40.3(ing, C.,)]TJ 0.6333 -1.2 TD 0.1246 Tw [(Hasegawa, M., and Okada, N. 1997. )60.8(A)47( newly isolated)]TJ T* 0.0188 Tw (family of short interspersed repetitive elements \(SINEs\))Tj T* 0.0791 Tw (in coregonid fishes \(whitefish\) with sequences that are)Tj T* 0.0617 Tw (almost identical to those of the )Tj /F3 1 Tf 9 0 1.913 9 189.61 564.675 Tm 0 Tw (Sma)Tj /F1 1 Tf 9 0 0 9 208.09 564.675 Tm 0.0617 Tw (I family of repeats:)Tj -16.2067 -1.2 TD 0.103 Tw (possible evidence for the horizontal transfer of SINEs.)Tj T* 0 Tw (Genetics)Tj /F3 1 Tf 9 0 1.913 9 97.69 543.075 Tm ( )Tj /F1 1 Tf 9 0 0 9 100.21 543.075 Tm -0.0008 Tw (146: 355-367.)Tj -4.8533 -1.2 TD -0.0112 Tc -0.0695 Tw [(Handler)55.8(, )50.7(A. 2002. Use of the )]TJ /F3 1 Tf 9 0 1.913 9 164.95 532.275 Tm 0 Tw (piggyBac)Tj /F1 1 Tf 9 0 0 9 201.13 532.275 Tm 0 Tc ( )Tj 0.1973 0 TD -0.0112 Tc -0.0695 Tw (transposon for germ-)Tj -15.6306 -1.2 TD 0 Tc -0.0316 Tw (line transformation of insects. Insect Biochem. Mol. Biol.)Tj T* -0.002 Tw [(32: 121)74(1.)]TJ -0.6333 -1.2 TD -0.0053 Tw [(Haring, E., Hagemann, S., and Pinsker)50.2(, W)54.7(.)0( 2000. )52.1(Ancient)]TJ 0.6333 -1.2 TD 0.0158 Tc 0.1389 Tw (and recent horizontal invasions of drosophilids by )Tj /F3 1 Tf 9 0 1.913 9 277.33 489.075 Tm 0 Tc 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 62.23 478.275 Tm -0.0005 Tw (elements. J. Mol. Evol. 51: 577-586.)Tj -0.6333 -1.2 TD -0.0124 Tc -0.0695 Tw [(Hartl, D.L., Lohe, )52.5(A.R., and Lozovskaya, E.R. 1997. Modern)]TJ 0.6333 -1.2 TD 0.0042 Tc 0.1389 Tw (thoughts on an )Tj /F3 1 Tf 9 0 1.913 9 128.53 456.675 Tm 0 Tw (ancyent)Tj /F1 1 Tf 9 0 0 9 160.33 456.675 Tm 0 Tc ( )Tj /F3 1 Tf 9 0 1.913 9 164.17 456.675 Tm 0.0042 Tc (marinere)Tj /F1 1 Tf 9 0 0 9 199.93 456.675 Tm 0.1389 Tw (: function, evolution,)Tj -15.3 -1.2 TD 0 Tc -0.0001 Tw [(regulation. )53.6(Annu. Rev)75.6(. Genet. 31: 337-358.)]TJ -0.6333 -1.2 TD -0.0373 Tw [(Heath, B.D., Butcher)56.5(, R.D., Whitfield, W)47.5(.G., and Hubbard,)]TJ 0.6333 -1.2 TD 0.0133 Tc 0.1389 Tw [(S.F)115.9(. 1999. Horizontal transfer of )]TJ /F3 1 Tf 9 0 1.913 9 201.61 424.275 Tm 0 Tw (Wolbachia)Tj /F1 1 Tf 9 0 0 9 244.69 424.275 Tm 0 Tc ( )Tj 0.4302 0 TD 0.0133 Tc (between)Tj -20.7036 -1.2 TD 0.0115 Tc 0.1389 Tw (phylogenetically distant insect species by a naturally)Tj T* 0 Tc 0.0004 Tw [(occurring mechanism. Curr)56.3(. Biol. 9: 313-316.)]TJ -0.6333 -1.2 TD 0.002 Tc 0.1389 Tw [(Herdia, F)106.5(.)0( 2002 Evoluo do retroelemento )]TJ /F3 1 Tf 9 0 1.913 9 243.43 391.875 Tm 0 Tw (gypsy)Tj /F1 1 Tf 9 0 0 9 267.01 391.875 Tm 0 Tc ( )Tj 0.4189 0 TD 0.002 Tc (em)Tj -23.1722 -1.2 TD 0.0307 Tc 0.1389 Tw (espcies de )Tj /F3 1 Tf 9 0 1.913 9 118.57 381.075 Tm 0 Tw (Drosophila)Tj /F1 1 Tf 9 0 0 9 164.35 381.075 Tm 0 Tc ( )Tj 0.4476 0 TD 0.0307 Tc (e )Tj /F3 1 Tf 9 0 1.913 9 177.67 381.075 Tm 0.1389 Tw (Zaprionis indianus)Tj /F1 1 Tf 9 0 0 9 256.93 381.075 Tm (. Uma)Tj -21.6333 -1.2 TD 0 Tc 0.0735 Tw [(abordagem filogentica, Doctoral )18.3(Thesis, Universidade)]TJ T* -0.0001 Tw [(Federal do Rio Grande do Sul, Porto )53.8(Alegre, Brazil.)]TJ -0.6333 -1.2 TD 0.0038 Tc 0.139 Tw [(Hickey)69.7(, D.A. 1982. Selfish DNA: a sexually-transmitted)]TJ 0.6333 -1.2 TD 0 Tc -0.0001 Tw (nuclear parasite. Genetics)Tj /F3 1 Tf 9 0 1.913 9 166.75 337.875 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 169.27 337.875 Tm -0.0001 Tw (101: 519-531.)Tj -12.5267 -1.2 TD -0.0107 Tc -0.0694 Tw [(Higuet, D., Merot, H., )49.6(Allouis, S., and Montchamp-Moreau,)]TJ 0.6333 -1.2 TD -0.0097 Tc -0.0695 Tw [(C. 1996. )24.8(The relationship between structural variation and)]TJ T* 0 Tc -0.0559 Tw (dysgenic properties of )Tj /F3 1 Tf 9 0 1.913 9 151.27 305.475 Tm 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 157.27 305.475 Tm ( )Tj 0.2221 0 TD -0.0559 Tw (elements in long-established P-)Tj -10.7821 -1.2 TD 0.0927 Tw (transformed lines of )Tj /F3 1 Tf 9 0 1.913 9 146.23 294.675 Tm (Drosophila simulans)Tj /F1 1 Tf 9 0 0 9 228.13 294.675 Tm (. Heredity)Tj /F3 1 Tf 9 0 1.913 9 267.43 294.675 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 270.79 294.675 Tm (77:)Tj -23.1733 -1.2 TD -0.0004 Tc (9-15.)Tj -0.6333 -1.2 TD 0 Tc -0.0205 Tw [(Horn, C., Of)14.1(fen, N., Nystedt, S., Hacker)54.2(, U., and Wimmer)57(,)]TJ 0.6333 -1.2 TD -0.0565 Tw (E.A. 2003. )Tj /F3 1 Tf 9 0 1.913 9 105.73 262.275 Tm 0 Tw (piggyBac)Tj /F1 1 Tf 9 0 0 9 142.75 262.275 Tm -0.0565 Tw (-based insertional mutagenesis and)Tj -8.9467 -1.2 TD 0.0436 Tc 0.1389 Tw (enhancer detection as a tool for functional insect)Tj T* 0 Tc 0.0006 Tw (genomics. Genetics)Tj /F3 1 Tf 9 0 1.913 9 141.25 240.675 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 143.77 240.675 Tm 0.0006 Tw (163: 647-661.)Tj -9.6933 -1.2 TD -0.0054 Tc -0.0695 Tw (Houck, M.A., Clark, J.B., Peterson, K.R., and Kidwell, M.G.)Tj 0.6333 -1.2 TD 0 Tc 0.0921 Tw (1991. Possible horizontal transfer of )Tj /F3 1 Tf 9 0 1.913 9 212.47 219.075 Tm 0 Tw (Drosophila)Tj /F1 1 Tf 9 0 0 9 255.43 219.075 Tm ( )Tj 0.3701 0 TD (genes)Tj -21.8368 -1.2 TD 0.0008 Tc 0.139 Tw (by the mite )Tj /F3 1 Tf 9 0 1.913 9 112.57 208.275 Tm (Proctolaelaps regalis)Tj /F1 1 Tf 9 0 0 9 197.53 208.275 Tm (. Science)Tj /F3 1 Tf 9 0 1.913 9 235.87 208.275 Tm 0 Tc 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 239.59 208.275 Tm 0.0008 Tc 0.139 Tw [(253: 1)70.6(125-)]TJ -19.7067 -1.2 TD 0 Tc 0 Tw (1)Tj 0.48 0 TD -0.0002 Tc (128.)Tj -1.1133 -1.2 TD -0.0028 Tc -0.0695 Tw [(Ivics, Z., Hackett, P)126.8(.B., Plasterk, R.H., and Izsvk, Z. 1997.)]TJ 0.6333 -1.2 TD 0 Tc 0.0337 Tw (Molecular reconstruction of )Tj /F3 1 Tf 9 0 1.913 9 173.65 175.875 Tm (Sleeping Beauty)Tj /F1 1 Tf 9 0 0 9 239.53 175.875 Tm (, a )Tj /F3 1 Tf 9 0 1.913 9 252.61 175.875 Tm -0.091 Tc 0 Tw [(Tc)-91(1)]TJ /F1 1 Tf 9 0 0 9 266.83 175.875 Tm 0 Tc (-like)Tj -22.7333 -1.2 TD -0.0058 Tc -0.0694 Tw (transposon from fish, and its transposition in human cells.)Tj T* 0 Tc 0 Tw (Cell)Tj /F3 1 Tf 9 0 1.913 9 77.71 154.275 Tm ( )Tj /F1 1 Tf 9 0 0 9 80.23 154.275 Tm 0.0002 Tw (91: 501-510.)Tj -2.6333 -1.2 TD 0.1336 Tw [(Ivics, Z., Izsvk, Z., Minter)48.7(, )56.3(A., and Hackett, P)134.3(.B. 1996.)]TJ 0.6333 -1.2 TD -0.0064 Tc -0.0694 Tw (Indentification of functional domains and evolution of )Tj /F3 1 Tf 9 0 1.913 9 266.29 132.675 Tm -0.0977 Tc 0 Tw [(Tc)-91.3(1)]TJ /F1 1 Tf 9 0 0 9 280.33 132.675 Tm 0 Tc (-)Tj -24.2333 -1.2 TD 0.0238 Tw [(like transposable elements. Proc. Natl. )59.1(Acad. Sci. USA.)]TJ T* -0.0002 Tw (93: 5008-5013.)Tj -0.6333 -1.2 TD 0.038 Tc 0.1389 Tw [(Jackson, M.S., Black, D.M., and Dover)50.9(, G.A. 1988.)]TJ 28.3533 72 TD 0.0473 Tc (Amplification of KP elements associated with the)Tj 0 -1.2 TD 0.0695 Tc 0.2666 Tw (repression of hybrid dysgenesis in )Tj /F3 1 Tf 9 0 1.913 9 484.15 737.475 Tm 0 Tw (Drosophila)Tj -18.9049 -1.2 TD 0 Tc (melanogaster)Tj /F1 1 Tf 9 0 0 9 366.25 726.675 Tm -0.0188 Tw (. Genetics)Tj /F3 1 Tf 9 0 1.913 9 406.63 726.675 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 408.91 726.675 Tm -0.0188 Tw (120: 1003-1013.)Tj -11.4267 -1.2 TD 0.0361 Tc 0.1389 Tw [(Jarvik, )21.3(T)113.8(., and Lark, K.G. 1998. Characterization of)]TJ /F3 1 Tf 9 0 1.913 9 311.71 705.0751 Tm 0 Tc 0 Tw (Soymar1)Tj /F1 1 Tf 9 0 0 9 347.71 705.0751 Tm 0.0157 Tw (, a )Tj /F3 1 Tf 9 0 1.913 9 360.49 705.0751 Tm 0 Tw (mariner)Tj /F1 1 Tf 9 0 0 9 391.03 705.0751 Tm ( )Tj 0.2937 0 TD 0.0157 Tw (element in soybean. Genetics)Tj /F3 1 Tf 9 0 1.913 9 512.65 705.0751 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 515.29 705.0751 Tm (149:)Tj -22.62 -1.2 TD 0.0001 Tc (1569-1574.)Tj -0.6267 -1.2 TD -0.0059 Tc -0.0694 Tw [(Jehle, J.A., Fritsch, E., Nickel, )59.6(A., Huber)48.3(, J., and Backhaus,)]TJ 0.6267 -1.2 TD 0 Tc 0.0018 Tw [(H. 1995. )15(TCl4.7: a novel lepidopteran transposon found)]TJ T* 0 Tw (in )Tj /F3 1 Tf 9 0 1.913 9 321.43 661.875 Tm 0.0261 Tw (Cydia pomonella)Tj /F1 1 Tf 9 0 0 9 388.69 661.875 Tm 0 Tw ( )Tj 0.3041 0 TD 0.0261 Tw [(granulosis virus. V)12(irology)]TJ /F3 1 Tf 9 0 1.913 9 491.83 661.875 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 494.53 661.875 Tm 0.0261 Tw (207: 369-)Tj -20.3133 -1.2 TD -0.0006 Tc 0 Tw (379.)Tj -0.6267 -1.2 TD 0.0213 Tc 0.1389 Tw [(Jensen, S., Gassama, M.P)129.3(., and Heidmann, )18.9(T)105.6(.)0( 1999.)]TJ 0.6267 -1.2 TD 0 Tc 0 Tw (T)Tj 0.5667 0 TD 0.0678 Tc 0.1389 Tw (aming of transposable elements by homology-)Tj -0.5667 -1.2 TD 0 Tc 0 Tw (dependent gene silencing. Nat. Genet. 21: 209-212.)Tj -0.6267 -1.2 TD 0.1104 Tw [(Jordan, I.K., Matyunina, L.V)98.1(., and McDonald, J.F)104.1(. 1999.)]TJ 0.6267 -1.2 TD -0.0094 Tc -0.0695 Tw [(Evidence for the recent horizontal transfer of long terminal)]TJ T* 0 Tc 0.0316 Tw [(repeat retrotransposon. Proc. Natl. )57.9(Acad. Sci. USA. 96:)]TJ T* 0 Tw (12621-12625.)Tj -0.6267 -2.4 TD -0.0377 Tw [(Jordan, I.K., Rogozin, I.B., Glazko, G.V)93.6(., and Koonin, E.V)94.6(.)]TJ 0.6267 -1.2 TD -0.001 Tc -0.0695 Tw (2003. Origin of a substantial fraction of human regulatory)Tj T* 0 Tc 0.0439 Tw [(sequences from transposable elements. )17.1(T)37.7(rends Genet.)]TJ T* 0.0021 Tw (19: 68-72.)Tj -0.6267 -1.2 TD 0.0533 Tc 0.1389 Tw [(Kapitonov)73.1(, V)95.1(.)0(V)91.6(., and Jurka, J. 2001. Rolling-circle)]TJ 0.6267 -1.2 TD 0 Tc 0.0476 Tw [(transposons in eukaryotes. Proc. Natl. )58.7(Acad. Sci. USA.)]TJ T* -0.0002 Tw (98: 8714-8719.)Tj -0.6267 -1.2 TD 0.0894 Tw [(Kaplan, N., Darden, )21.7(T)111(., and Langley)67.6(, C. 1985. Evolution)]TJ 0.6267 -1.2 TD 0.0032 Tc 0.1389 Tw (and extinction of transposable elements in Mendelian)Tj T* 0 Tc -0.0001 Tw (populations. Genetics)Tj /F3 1 Tf 9 0 1.913 9 398.23 456.675 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 400.75 456.675 Tm -0.0001 Tw (109: 459-480.)Tj -10.52 -1.2 TD -0.0121 Tc -0.0695 Tw [(Kaufman, P)127.8(.D., and Rio, D.C. 1992. )]TJ /F3 1 Tf 9 0 1.913 9 442.39 445.875 Tm 0 Tc 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 448.33 445.875 Tm ( )Tj 0.1964 0 TD -0.0121 Tc -0.0695 Tw (element transposition)Tj /F3 1 Tf 9 0 1.913 9 311.71 435.075 Tm -0.0093 Tc (in vitro)Tj /F1 1 Tf 9 0 0 9 336.91 435.075 Tm 0 Tc 0 Tw ( )Tj 0.1992 0 TD -0.0093 Tc -0.0695 Tw (proceeds by a cut-and-paste mechanism and uses)Tj -2.9992 -1.2 TD 0 Tc 0.0008 Tw [(GTP)16( as a cofactor)58.7(. Cell)]TJ /F3 1 Tf 9 0 1.913 9 404.11 424.275 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 406.63 424.275 Tm 0.0008 Tw (69: 27-39.)Tj -11.1733 -1.2 TD 0.0389 Tc 0.1389 Tw (Kidwell, M.G. 1983. Evolution of hybrid dysgenesis)Tj 0.6267 -1.2 TD 0.0082 Tc (determinants in )Tj /F3 1 Tf 9 0 1.913 9 379.39 402.675 Tm (Drosophila melanogaster)Tj /F1 1 Tf 9 0 0 9 482.41 402.675 Tm (. Proc. Natl.)Tj -18.9667 -1.2 TD 0 Tc 0.0007 Tw (Acad. Sci. USA. 80: 1655-1659.)Tj -0.6267 -1.2 TD 0.0226 Tc 0.1389 Tw (Kidwell, M.G. 1985. Hybrid dysgenesis in )Tj /F3 1 Tf 9 0 1.913 9 487.93 381.075 Tm 0 Tw (Drosophila)Tj -19.3249 -1.2 TD 0.0266 Tc (melanogaster)Tj /F1 1 Tf 9 0 0 9 369.13 370.275 Tm 0.1389 Tw (: nature and inheritance of )Tj /F3 1 Tf 9 0 1.913 9 489.13 370.275 Tm 0 Tc 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 495.37 370.275 Tm ( )Tj 0.4435 0 TD 0.0266 Tc (element)Tj -20.8501 -1.2 TD 0 Tc -0.0004 Tw (regulation. Genetics)Tj /F3 1 Tf 9 0 1.913 9 391.75 359.475 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 394.27 359.475 Tm -0.076 Tc (11)Tj 0.96 0 TD 0 Tc -0.0005 Tw (1: 337-350.)Tj -10.76 -1.2 TD -0.0328 Tw (Kidwell, M.G. 1992. Horizontal transfer of )Tj /F3 1 Tf 9 0 1.913 9 470.83 348.675 Tm 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 476.83 348.675 Tm ( )Tj 0.2452 0 TD -0.0328 Tw (elements and)Tj -18.5919 -1.2 TD 0.001 Tc 0.1389 Tw (other short inverted repeat transposons. Genetica)Tj /F3 1 Tf 9 0 1.913 9 516.49 337.875 Tm 0 Tc 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 520.27 337.875 Tm 0.001 Tc (86:)Tj -23.1733 -1.2 TD 0.0003 Tc (275-286.)Tj -0.6267 -1.2 TD 0 Tc -0.0377 Tw (Kidwell, M.G. 1993. Lateral transfer in natural populations)Tj 0.6267 -1.2 TD -0.0001 Tw [(of eukaryotes. )52.2(Annu. Rev)75.6(. Genet. 27: 235-256.)]TJ -0.6267 -1.2 TD -0.0058 Tc -0.0694 Tw [(Kidwell, M.G. 1994. )17.5(The evolutionary history of the )]TJ /F3 1 Tf 9 0 1.913 9 501.79 294.675 Tm 0 Tc 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 507.73 294.675 Tm ( )Tj 0.2028 0 TD -0.0058 Tc (family)Tj -21.9828 -1.2 TD 0 Tc -0.0003 Tw (of transposable elements. J. Hered. 85: 339-346.)Tj -0.6267 -1.2 TD 0.0578 Tw [(Kidwell, M.G., Kidwell, J.F)111.4(., and Sved, J.A. 1977. Hybrid)]TJ 0.6267 -1.2 TD 0.0368 Tw (dysgenesis in )Tj /F3 1 Tf 9 0 1.913 9 369.43 262.275 Tm 0.0367 Tw (Drosophila melanogaster)Tj /F1 1 Tf 9 0 0 9 469.81 262.275 Tm (: a syndrome of)Tj -17.5667 -1.2 TD 0.022 Tc 0.1389 Tw (aberrant traits including mutation, sterility and male)Tj T* 0 Tc 0.0003 Tw (recombination. Genetics)Tj /F3 1 Tf 9 0 1.913 9 408.73 240.675 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 411.25 240.675 Tm 0.0003 Tw (36: 813-833.)Tj -11.6867 -1.2 TD -0.0026 Tc -0.0695 Tw (Kidwell, M.G., Kimura, K., and Black, D.M. 1988. Evolution)Tj 0.6267 -1.2 TD 0.0328 Tc 0.139 Tw (of hybrid dysgenesis potential following)Tj /F3 1 Tf 9 0 1.913 9 484.63 219.075 Tm 0.1718 Tc 0 Tw ( P)Tj /F1 1 Tf 9 0 0 9 494.95 219.075 Tm 0 Tc ( )Tj 0.4498 0 TD 0.0328 Tc (element)Tj -20.8098 -1.2 TD -0.0077 Tc -0.0694 Tw (contamination in )Tj /F3 1 Tf 9 0 1.913 9 377.29 208.275 Tm (Drosophila melanogaster)Tj /F1 1 Tf 9 0 0 9 475.15 208.275 Tm (. Genetics)Tj /F3 1 Tf 9 0 1.913 9 514.33 208.275 Tm 0 Tc 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 516.13 208.275 Tm (1)Tj 0.48 0 TD -0.0077 Tc (19:)Tj -23.1933 -1.2 TD 0.0003 Tc (815-828.)Tj -0.6267 -1.2 TD 0 Tc -0.0694 Tw [(Kidwell, M.G., and Lisch, D. 2000. )17.1(T)44.3(ransposable elements)]TJ 0.6267 -1.2 TD 0.0689 Tw [(and host genome evolution. )18.8(T)37.7(rends Ecol. Evol. 15: 95-)]TJ T* -0.0006 Tc 0 Tw (99.)Tj -0.6267 -1.2 TD 0.0527 Tc 0.139 Tw [(Kim, )54(A., )24.3(T)110.4(erzian, C., Santamaria, P)126.5(., Plisson, )52.6(A.,)]TJ 0.6267 -1.2 TD 0 Tc 0.083 Tw [(Prudhomme, N., and Bucheton, )59.2(A. 1994. Retroviruses)]TJ T* -0.0559 Tw (in invertebrates: the )Tj /F3 1 Tf 9 0 1.913 9 391.75 132.675 Tm 0 Tw (gypsy)Tj /F1 1 Tf 9 0 0 9 415.27 132.675 Tm ( )Tj 0.2221 0 TD -0.0559 Tw (retrotransposon is apparently)Tj -11.7287 -1.2 TD -0.0083 Tc -0.0695 Tw (an infectious retrovirus of )Tj /F3 1 Tf 9 0 1.913 9 410.17 121.875 Tm (Drosophila melanogaster)Tj /F1 1 Tf 9 0 0 9 507.85 121.875 Tm (. Proc.)Tj -21.7933 -1.2 TD 0 Tc 0.0003 Tw [(Natl. )54.3(Acad. Sci. USA. 91: 1285-1289.)]TJ -0.6267 -1.2 TD 0.0181 Tc 0.1389 Tw [(Kimura, K., and Kidwell, M.G. 1994. Dif)20.4(ferences in )]TJ /F3 1 Tf 9 0 1.913 9 526.81 100.275 Tm 0 Tc 0 Tw (P)Tj ET endstream endobj 40 0 obj << /Type /Page /Parent 95 0 R /Resources 41 0 R /Contents 42 0 R /Thumb 80 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 41 0 obj << /ProcSet [ /PDF /Text ] /Font << /F1 114 0 R /F2 113 0 R /F3 128 0 R >> /ExtGState << /GS1 139 0 R /GS2 138 0 R >> /ColorSpace << /Cs8 112 0 R >> >> endobj 42 0 obj << /Length 16976 >> stream BT /F1 1 Tf 9 0 0 9 337.47 780.5551 Tm 0 0 0 1 k /GS2 gs 0 Tc -0.0155 Tw [(Horizontal Transfer of Transposable Elements 13)]TJ /F2 1 Tf 37.9351 29.4096 -29.4096 37.9351 42.9423 542.4378 Tm 2 Tr 0 0 0 0.45 K 0 J 0 j 0.576 w 10 M []0 d /Cs8 cs 0 scn /GS1 gs 0.0686 Tc -0.0001 Tw (PAGE PROOFS)Tj /F1 1 Tf 9 0 0 9 67.83 748.275 Tm 0 Tr 0 0 0 1 k /GS2 gs -0.0088 Tc -0.0695 Tw (element population dynamics between the sibling species)Tj /F3 1 Tf 9 0 1.913 9 67.83 737.475 Tm 0.0295 Tc 0.1389 Tw (Drosophila melanogaster)Tj /F1 1 Tf 9 0 0 9 175.23 737.475 Tm 0 Tc 0 Tw ( )Tj 0.4465 0 TD 0.0295 Tc (and )Tj /F3 1 Tf 9 0 1.913 9 199.11 737.475 Tm 0.1389 Tw (Drosophila simulans)Tj /F1 1 Tf 9 0 0 9 286.47 737.475 Tm 0 Tc 0 Tw (.)Tj -24.2933 -1.2 TD -0.0002 Tw (Genet. Res. 63: 27-38.)Tj -0.6267 -1.2 TD 0.059 Tc 0.1389 Tw [(Kimura, M. 1980. )57.7(A)52.7( simple method for estimating)]TJ 0.6267 -1.2 TD 0.0695 Tc 0.1829 Tw (evolutionary rate of base substitutions through)Tj T* 0.0054 Tc 0.1389 Tw (comparative studies of nucleotide sequences. J. Mol.)Tj T* 0 Tc 0 Tw (Evol.)Tj /F3 1 Tf 9 0 1.913 9 87.87 683.475 Tm ( )Tj /F1 1 Tf 9 0 0 9 90.33 683.475 Tm -0.001 Tw [(16: 1)69.6(1)76(1-120.)]TJ -3.1267 -1.2 TD -0.0585 Tw [(Koga, )52.5(A., Shimada, )52.8(A., Shima, )60.8(A., Sakaizumi, M., )14(T)111(achida,)]TJ 0.6267 -1.2 TD 0.1048 Tw (H., and Hori, H. 2000. Evidence for recent invasion of)Tj T* 0.0327 Tc 0.139 Tw (the medaka fish genome by the )Tj /F3 1 Tf 9 0 1.913 9 212.25 651.075 Tm 0 Tc 0 Tw (T)Tj 0.5533 0 TD 0.0327 Tc (ol2)Tj /F1 1 Tf 9 0 0 9 230.13 651.075 Tm 0 Tc ( )Tj 0.4496 0 TD 0.0327 Tc (transposable)Tj -18.483 -1.2 TD 0 Tc 0.0006 Tw (element. Genetics)Tj /F3 1 Tf 9 0 1.913 9 140.37 640.275 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 142.89 640.275 Tm 0.0006 Tw (155: 273-281.)Tj -8.9667 -1.2 TD -0.0598 Tw (Kondo, N., Nikoh, N., Ijichi, N., Shimada, M., and Fukatsu,)Tj 0.6267 -1.2 TD -0.111 Tc 0 Tw (T.)Tj 0.778 0 TD ( )Tj 0.2961 0 TD 0 Tc 0.0181 Tw (2002. Genome fragment of )Tj /F3 1 Tf 9 0 1.913 9 188.25 618.675 Tm 0 Tw (Wolbachia)Tj /F1 1 Tf 9 0 0 9 230.25 618.675 Tm ( )Tj 0.2961 0 TD (endosymbiont)Tj -18.3428 -1.2 TD 0.0279 Tw (transferred to X chromosome of host insect. Proc. Natl.)Tj T* 0.0004 Tw (Acad. Sci. USA. 99: 14280-14285.)Tj -0.6267 -1.2 TD -0.0063 Tc -0.0694 Tw [(Konieczny)69.8(, )60.7(A., V)53.8(oytas, D.F)111.4(., Cummings, M.P)126.7(., and )57.2(Ausubel,)]TJ 0.6267 -1.2 TD 0 Tc 0 Tw (F)Tj 0.5533 0 TD 0.052 Tc 0.1389 Tw [(.M. 1991. )58(A)52.3( superfamily of )]TJ /F3 1 Tf 9 0 1.913 9 197.73 575.475 Tm (Arabidopsis thaliana)Tj /F1 1 Tf 9 0 0 9 67.83 564.675 Tm 0 Tc 0 Tw (retrotransposons. Genetics)Tj /F3 1 Tf 9 0 1.913 9 175.89 564.675 Tm ( )Tj /F1 1 Tf 9 0 0 9 178.41 564.675 Tm (127: 801-809.)Tj -12.9133 -1.2 TD 0.0258 Tc 0.139 Tw [(Kordis, D., and Gubensek, F)110.3(.)0( 1995. Horizontal SINE)]TJ 0.6267 -1.2 TD -0.0072 Tc -0.0695 Tw (transfer between vertebrate classes. Nat. Genet.)Tj /F3 1 Tf 9 0 1.913 9 255.21 543.075 Tm 0 Tc 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 257.01 543.075 Tm -0.0072 Tc -0.0695 Tw (10: 131-)Tj -21.02 -1.2 TD -0.0006 Tc 0 Tw (132.)Tj -0.6267 -1.2 TD 0.0323 Tc 0.1389 Tw [(Labrador)53.7(, M., and Corces, V)88.3(.G. 1997. )19.5(T)43.3(ransposable)]TJ 0.6267 -1.2 TD 0.012 Tc (element-host interactions: regulation of insertion and)Tj T* 0 Tc 0.0002 Tw [(excision. )54.9(Annu. Rev)69.2(. Genet. 31: 381-404.)]TJ -0.6267 -1.2 TD 0.0331 Tw [(Lam, W)58.1(.L., Seo, P)129.6(., Robison, K., V)12(irk, S., and Gilbert, W)55.5(.)]TJ 0.6267 -1.2 TD 0.038 Tc 0.1389 Tw (1996. Discovery of amphibian )Tj /F3 1 Tf 9 0 1.913 9 203.85 478.275 Tm -0.0577 Tc 0 Tw [(Tc)-95.7(1)]TJ /F1 1 Tf 9 0 0 9 219.03 478.275 Tm 0.038 Tc 0.1389 Tw (-like transposon)Tj -16.8 -1.2 TD 0 Tc -0.0005 Tw (families. J. Mol. Biol. 257:359-366.)Tj -0.6267 -1.2 TD 0.0527 Tw [(Lambert, M.E., McDonald, J.F)113.6(., and W)16.1(einstein, I.B., eds.)]TJ 0.6267 -1.2 TD 0.0328 Tw [(1988. Eukaryotic )18.3(T)31(ransposable Elements as Mutagenic)]TJ T* 0.0002 Tw (Agents. Cold Spring Harbor Laboratory Press.)Tj -0.6267 -1.2 TD 0.0262 Tw (Lampe, D.J., Churchill, M.E., and Robertson, H.M. 1996.)Tj 0.6267 -1.2 TD -0.0537 Tc 0 Tw (A )Tj 1.0128 0 TD 0 Tc (purified )Tj /F3 1 Tf 9 0 1.913 9 110.07 413.475 Tm (mariner)Tj /F1 1 Tf 9 0 0 9 140.55 413.475 Tm ( )Tj 0.3995 0 TD 0.1215 Tw [(transposase is suf)14.8(ficient to mediate)]TJ -8.4795 -1.2 TD 0 Tw (transposition )Tj /F3 1 Tf 9 0 1.913 9 121.41 402.675 Tm 0.0001 Tw (in vitro)Tj /F1 1 Tf 9 0 0 9 147.87 402.675 Tm (. EMBO J. 15: 5470-5479.)Tj -9.52 -1.2 TD 0.1266 Tw [(Lampe, D.J., W)37.6(alden, K.K., and Robertson, H.M. 2001.)]TJ 0.6267 -1.2 TD 0.1017 Tw (Loss of transposase-DNA interaction may underlie the)Tj T* -0.0466 Tw (divergence of )Tj /F3 1 Tf 9 0 1.913 9 123.57 370.275 Tm 0 Tw (mariner)Tj /F1 1 Tf 9 0 0 9 154.05 370.275 Tm ( )Tj 0.2314 0 TD -0.0466 Tw (family transposable elements and)Tj -9.8114 -1.2 TD -0.0113 Tw (the ability of more than one )Tj /F3 1 Tf 9 0 1.913 9 178.29 359.475 Tm 0 Tw (mariner)Tj /F1 1 Tf 9 0 0 9 208.77 359.475 Tm ( )Tj 0.2667 0 TD -0.0113 Tw (to occupy the same)Tj -15.9267 -1.2 TD 0.0003 Tw (genome. Mol. Biol. Evol.)Tj /F3 1 Tf 9 0 1.913 9 164.91 348.675 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 167.37 348.675 Tm 0.0003 Tw (18: 954-961.)Tj -11.6867 -1.2 TD 0.0347 Tc 0.1389 Tw [(Langin, )20.9(T)112.4(., Capy)69.6(, P)125.9(., and Daboussi, M.J. 1995. )22.7(The)]TJ 0.6267 -1.2 TD 0 Tc 0.1346 Tw (transposable element )Tj /F3 1 Tf 9 0 1.913 9 158.85 327.075 Tm 0 Tw (impala)Tj /F1 1 Tf 9 0 0 9 185.37 327.075 Tm 0.1346 Tw (, a fungal member of the)Tj /F3 1 Tf 9 0 1.913 9 67.83 316.275 Tm 0 Tw (T)Tj 0.52 0 TD (c1-mariner)Tj /F1 1 Tf 9 0 0 9 115.53 316.275 Tm [( superfamily)70(. Mol. Gen. Genet. 246: 19-28.)]TJ -5.9267 -1.2 TD -0.01 Tc -0.0695 Tw [(Lcher)50.1(, P)130.1(., Bucheton, )58.8(A., and Plisson, )52.7(A. 1997. Expression)]TJ 0.6267 -1.2 TD 0.0083 Tc 0.1389 Tw (of the )Tj /F3 1 Tf 9 0 1.913 9 95.91 294.675 Tm 0 Tw (Drosophila)Tj /F1 1 Tf 9 0 0 9 139.65 294.675 Tm 0 Tc ( )Tj 0.4252 0 TD 0.0083 Tc (retrovirus )Tj /F3 1 Tf 9 0 1.913 9 185.55 294.675 Tm (gypsy)Tj /F1 1 Tf 9 0 0 9 209.43 294.675 Tm 0 Tc ( )Tj 0.4252 0 TD 0.0083 Tc 0.1389 Tw (as ultrastructurally)Tj -16.1585 -1.2 TD 0.0144 Tc (detectable particles in the ovaries of flies carrying a)Tj T* 0 Tc 0 Tw (permissive )Tj /F3 1 Tf 9 0 1.913 9 112.77 273.075 Tm (flamenco)Tj /F1 1 Tf 9 0 0 9 149.25 273.075 Tm ( )Tj 0.2089 0 TD -0.0691 Tw [(allele. J. Gen. V)13.9(irol. 78: 2379-2388.)]TJ -9.8822 -1.2 TD -0.0045 Tw [(Lee, C.C., Mul, )13.5(Y)133.7(.M., and Rio, D.C. 1996. )15.8(The )]TJ /F3 1 Tf 9 0 1.913 9 245.97 262.275 Tm 0 Tw (Drosophila)Tj -19.5383 -1.2 TD (P)Tj /F1 1 Tf 9 0 0 9 73.83 251.475 Tm (-element KP repressor protein dimerizes and interacts)Tj -0.6667 -1.2 TD -0.0554 Tw (with multiple sites on )Tj /F3 1 Tf 9 0 1.913 9 151.41 240.675 Tm 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 157.41 240.675 Tm -0.0554 Tw (-element DNA. Mol. Cell. Biol. 16:)Tj -9.9533 -1.2 TD 0.0001 Tc 0 Tw (5616-5622.)Tj -0.6267 -1.2 TD 0 Tc 0.0299 Tw [(Lerat, E., Brunet, F)112(., Bazin, C., and Capy)73.2(, P)132.9(.)0( 1999. Is the)]TJ 0.6267 -1.2 TD 0.0771 Tw (evolution of transposable elements modular? Genetica)Tj T* 0.0015 Tw (107: 15-25.)Tj -0.6267 -1.2 TD 0.0085 Tc 0.1389 Tw (Lidholm, D.A., Gudmundsson, G.H., and Boman, H.G.)Tj 0.6267 -1.2 TD 0.0131 Tc [(1991. )50.7(A)60.1( highly repetitive, )]TJ /F3 1 Tf 9 0 1.913 9 176.07 175.875 Tm 0 Tw (mariner)Tj /F1 1 Tf 9 0 0 9 207.45 175.875 Tm 0.1389 Tw (-like element in the)Tj -15.5133 -1.2 TD 0.0085 Tc (genome of )Tj /F3 1 Tf 9 0 1.913 9 116.13 165.075 Tm (Hyalophora cecropia.)Tj /F1 1 Tf 9 0 0 9 203.97 165.075 Tm 0 Tc 0 Tw ( )Tj 0.4254 0 TD 0.0085 Tc 0.1389 Tw (J. Biol. Chem.)Tj /F3 1 Tf 9 0 1.913 9 267.39 165.075 Tm 0 Tc 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 271.17 165.075 Tm 0.0085 Tc (266:)Tj -22.5933 -1.2 TD 0 Tc (1)Tj 0.4867 0 TD -0.0002 Tc [(1518-1)71.8(1521.)]TJ -1.1133 -1.2 TD 0 Tc -0.0356 Tw [(Lohe, )57.8(A.R., De )52.5(Aguiar)56.7(, D., and Hartl, D.L. 1997. Mutations)]TJ 0.6267 -1.2 TD 0.0091 Tc 0.1389 Tw (in the )Tj /F3 1 Tf 9 0 1.913 9 95.43 132.675 Tm 0 Tw (mariner)Tj /F1 1 Tf 9 0 0 9 126.51 132.675 Tm 0 Tc ( )Tj 0.426 0 TD 0.0091 Tc 0.1389 Tw (transposase: the D,D\(35\)E consensus)Tj -6.946 -1.2 TD 0 Tc 0.0632 Tw [(sequence is nonfunctional. Proc. Natl. )53.5(Acad. Sci. USA.)]TJ T* -0.0002 Tw (94: 1293-1297.)Tj -0.6267 -1.2 TD -0.0027 Tc -0.0694 Tw [(Lohe, )54.6(A.R., and Hartl, D.L. 1996. )57.5(Autoregulation of )]TJ /F3 1 Tf 9 0 1.913 9 258.57 100.275 Tm 0 Tw (mariner)Tj /F1 1 Tf 9 0 0 9 317.37 748.275 Tm 0.0038 Tc 0.1389 Tw (transposase activity by overproduction and dominant-)Tj T* 0 Tc -0.0283 Tw (negative complementation. Mol. Biol. Evol.)Tj /F3 1 Tf 9 0 1.913 9 485.91 737.475 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 488.13 737.475 Tm -0.0283 Tw (13: 549-555.)Tj -19.6067 -1.2 TD -0.0603 Tw [(Lohe, )53.1(A.R., Moriyama, E.N., Lidholm, D.A., and Hartl, D.L.)]TJ 0.6333 -1.2 TD 0.0332 Tw (1995. Horizontal transmission, vertical inactivation, and)Tj T* 0.0026 Tc 0.139 Tw (stochastic loss of )Tj /F3 1 Tf 9 0 1.913 9 392.61 705.0751 Tm 0 Tw (mariner)Tj /F1 1 Tf 9 0 0 9 423.27 705.0751 Tm 0.1389 Tw (-like transposable elements.)Tj -11.7667 -1.2 TD 0 Tc 0 Tw (Mol. Biol. Evol.)Tj /F3 1 Tf 9 0 1.913 9 376.83 694.275 Tm ( )Tj /F1 1 Tf 9 0 0 9 379.35 694.275 Tm (12: 62-72.)Tj -7.52 -1.2 TD -0.0119 Tc -0.0695 Tw [(Loreto, E.L., V)75.3(alente, V)90.3(.L., Zaha, )52.9(A., Silva, J.C., and Kidwell,)]TJ 0.6333 -1.2 TD -0.0057 Tc -0.0694 Tw (M.G. 2001. )Tj /F3 1 Tf 9 0 1.913 9 362.55 672.675 Tm (Drosophila mediopunctata)Tj /F1 1 Tf 9 0 0 9 465.27 672.675 Tm 0 Tc 0 Tw ( )Tj /F3 1 Tf 9 0 1.913 9 467.07 672.675 Tm (P)Tj /F1 1 Tf 9 0 0 9 473.07 672.675 Tm ( )Tj 0.2029 0 TD -0.0057 Tc -0.0694 Tw (elements: a new)Tj -17.5029 -1.2 TD 0 Tc -0.0004 Tw [(example of horizontal transfer)57.7(. J. Hered. 92: 375-381.)]TJ -0.6333 -1.2 TD -0.002 Tc -0.0694 Tw (Luan, D.D., Korman, M.H., Jakubczak, J.L., and Eickbush,)Tj 0.6333 -1.2 TD 0 Tc 0 Tw (T)Tj 0.5 0 TD -0.0693 Tw (.H. 1993. Reverse transcription of )Tj /F3 1 Tf 9 0 1.913 9 455.31 640.275 Tm 0 Tw (R2Bm)Tj /F1 1 Tf 9 0 0 9 480.27 640.275 Tm ( )Tj 0.2087 0 TD -0.0693 Tw [(RNA)53.1( is primed)]TJ -18.3087 -1.2 TD 0.0433 Tw (by a nick at the chromosomal target site: a mechanism)Tj T* 0.0003 Tw [(for non-L)75.7(TR retrotransposition. Cell)]TJ /F3 1 Tf 9 0 1.913 9 457.23 618.675 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 459.75 618.675 Tm 0.0003 Tw (72: 595-605.)Tj -16.4533 -1.2 TD 0.023 Tw [(Mackay)71.7(, )19(T)111(.)0(F)109(.)0( 1989. )22.1(T)31(ransposable elements and fitness in)]TJ /F3 1 Tf 9 0 1.913 9 317.37 597.075 Tm -0.013 Tw (Drosophila melanogaster)Tj /F1 1 Tf 9 0 0 9 417.27 597.075 Tm (. Genome)Tj /F3 1 Tf 9 0 1.913 9 456.69 597.075 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 459.09 597.075 Tm -0.013 Tw (31: 284-295.)Tj -16.38 -2.4 TD -0.0691 Tw [(Makalowski, W)51.3(.)0( 2000. Genomic scrap yard: how genomes)]TJ 0.6333 -1.2 TD 0.0002 Tw (utilize all that junk. Gene)Tj /F3 1 Tf 9 0 1.913 9 415.41 564.675 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 417.87 564.675 Tm 0.0002 Tw (259: 61-67.)Tj -11.8 -1.2 TD 0.1039 Tw [(Malik, H.S., Burke, W)53.9(.D., and Eickbush, )18.2(T)111(.H. 1999. )17.2(The)]TJ 0.6333 -1.2 TD 0.0602 Tc 0.1389 Tw [(age and evolution of non-L)76(TR retrotransposable)]TJ T* 0 Tc 0.0004 Tw (elements. Mol. Biol. Evol.)Tj /F3 1 Tf 9 0 1.913 9 418.41 532.275 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 420.87 532.275 Tm 0.0004 Tw (16: 793-805.)Tj -12.1333 -1.2 TD -0.0121 Tc -0.0695 Tw [(Malik, H.S., and Eickbush, )10.5(T)112.2(.H. 2001. Phylogenetic analysis)]TJ 0.6333 -1.2 TD -0.0127 Tc (of ribonuclease H domains suggests a late, chimeric origin)Tj T* 0.0165 Tc 0.1389 Tw [(of L)72.9(TR retrotransposable elements and retroviruses.)]TJ T* 0 Tc -0.0011 Tw (Genome Res.)Tj /F3 1 Tf 9 0 1.913 9 372.87 489.075 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 375.33 489.075 Tm (1)Tj 0.4867 0 TD -0.0011 Tw [(1: 1)73.6(187-1)77(197.)]TJ -7.56 -1.2 TD 0.0485 Tc 0.1389 Tw [(Mamoun, C.B., Gluzman, I.Y)130.6(., Beverley)69.4(, S.M., and)]TJ 0.6333 -1.2 TD 0.0054 Tc [(Goldberg, D.E. 2000. )21.9(T)36.4(ransposition of the )]TJ /F3 1 Tf 9 0 1.913 9 494.97 467.475 Tm 0 Tw (Drosophila)Tj /F1 1 Tf 9 0 0 9 317.37 456.675 Tm 0.0266 Tc (element )Tj /F3 1 Tf 9 0 1.913 9 355.05 456.675 Tm (mariner)Tj /F1 1 Tf 9 0 0 9 387.21 456.675 Tm 0 Tc ( )Tj 0.4435 0 TD 0.0266 Tc 0.1389 Tw (within the human malaria parasite)Tj /F3 1 Tf 9 0 1.913 9 317.37 445.875 Tm 0 Tc 0.1373 Tw (Plasmodium falciparum)Tj /F1 1 Tf 9 0 0 9 412.11 445.875 Tm (. Mol. Biochem. Parasitol.)Tj /F3 1 Tf 9 0 1.913 9 517.83 445.875 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 521.61 445.875 Tm (1)Tj 0.48 0 TD (10:)Tj -23.1733 -1.2 TD 0.0003 Tc (405-407.)Tj -0.6333 -1.2 TD 0.0506 Tc 0.1389 Tw (Maruyama, K., and Hartl, D.L. 1991. Evidence for)Tj 0.6333 -1.2 TD -0.0044 Tc -0.0695 Tw (interspecific transfer of the transposable element )Tj /F3 1 Tf 9 0 1.913 9 508.17 413.475 Tm 0 Tw (mariner)Tj /F1 1 Tf 9 0 0 9 317.37 402.675 Tm -0.0061 Tc (between )Tj /F3 1 Tf 9 0 1.913 9 352.77 402.675 Tm (Drosophila)Tj /F1 1 Tf 9 0 0 9 395.31 402.675 Tm 0 Tc ( )Tj 0.2024 0 TD -0.0061 Tc (and )Tj /F3 1 Tf 9 0 1.913 9 413.79 402.675 Tm (Zaprionus)Tj /F1 1 Tf 9 0 0 9 453.27 402.675 Tm -0.0695 Tw (. J. Mol. Evol. 33: 514-)Tj -15.1 -1.2 TD -0.0006 Tc 0 Tw (524.)Tj -0.6333 -1.2 TD 0.0298 Tc 0.1389 Tw [(Maside, X., Bartolome, C., )49.9(Assimacopoulos, S., and)]TJ 0.6333 -1.2 TD 0.062 Tc (Charlesworth, B. 2001. Rates of movement and)Tj T* 0.0294 Tc (distribution of transposable elements in )Tj /F3 1 Tf 9 0 1.913 9 493.05 359.475 Tm 0 Tw (Drosophila)Tj -19.2649 -1.2 TD 0 Tc (melanogaster)Tj /F1 1 Tf 9 0 0 9 371.91 348.675 Tm (: )Tj /F3 1 Tf 9 0 1.913 9 377.37 348.675 Tm 0.0551 Tw (in situ)Tj /F1 1 Tf 9 0 0 9 401.37 348.675 Tm 0 Tw ( )Tj 0.3331 0 TD (hybridization )Tj /F3 1 Tf 9 0 1.913 9 457.89 348.675 Tm (vs)Tj /F1 1 Tf 9 0 0 9 466.89 348.675 Tm ( )Tj 0.3331 0 TD 0.0551 Tw (Southern blotting)Tj -16.9465 -1.2 TD 0.0005 Tw (data. Genet. Res. 78: 121-136.)Tj -0.6333 -1.2 TD 0.1189 Tw [(Mason, P)122.9(., Strem, M., and Fedorof)18.3(f, N. 1991. )22(The )]TJ /F3 1 Tf 9 0 1.913 9 519.9301 327.075 Tm 0 Tw (tnpA)Tj /F1 1 Tf 9 0 0 9 317.37 316.275 Tm -0.0019 Tc (and )Tj /F3 1 Tf 9 0 1.913 9 334.17 316.275 Tm (tnpD)Tj /F1 1 Tf 9 0 0 9 353.07 316.275 Tm 0 Tc ( )Tj 0.2066 0 TD -0.0019 Tc -0.0695 Tw (gene products of the )Tj /F3 1 Tf 9 0 1.913 9 436.65 316.275 Tm 0 Tw (Spm)Tj /F1 1 Tf 9 0 0 9 455.07 316.275 Tm 0 Tc ( )Tj 0.2066 0 TD -0.0019 Tc -0.0695 Tw (element are required)Tj -15.5066 -1.2 TD 0 Tc 0.0007 Tw (for transposition in tobacco. Plant Cell)Tj /F3 1 Tf 9 0 1.913 9 468.45 305.475 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 470.97 305.475 Tm 0.0007 Tw (3: 73-85.)Tj -17.7 -1.2 TD 0.1275 Tw [(Matzke, M., Mette, M., )53.3(Aufsatz, W)55.8(., Jakowitsch, J., and)]TJ 0.6333 -1.2 TD 0.0313 Tw [(Matzke, )57(A. 1999. Host defenses to parasitic sequences)]TJ T* 0.0144 Tc 0.1389 Tw (and the evolution of epigenetic control mechanisms.)Tj T* 0 Tc 0 Tw (Genetica)Tj /F3 1 Tf 9 0 1.913 9 353.37 262.275 Tm ( )Tj /F1 1 Tf 9 0 0 9 355.83 262.275 Tm -0.0011 Tw (107: 271-287.)Tj -4.9067 -1.2 TD 0.0161 Tc 0.1389 Tw [(McDonald, J.F)108(. 1993. Evolution and consequences of)]TJ 0.6333 -1.2 TD 0 Tc 0.0262 Tw [(transposable elements. Curr)52.5(. Opin. Genet. Dev)80.7(. 3: 855-)]TJ T* -0.0006 Tc 0 Tw (864.)Tj -0.6333 -1.2 TD 0.0348 Tc 0.1389 Tw (McFadden, J., and Knowles, G. 1997. Escape from)Tj 0.6333 -1.2 TD 0 Tc 0.0411 Tw (evolutionary stasis by transposon-mediated deleterious)Tj T* 0.0004 Tw [(mutations. J. )21.2(Theor)52(. Biol. 186: 441-447.)]TJ -0.6333 -1.2 TD -0.0029 Tw [(Mejlumian, L., Plisson, )55(A., Bucheton, )49.5(A., and )21.2(T)111(erzian, C.)]TJ 0.6333 -1.2 TD -0.0006 Tw (2002. Comparative and functional studies of )Tj /F3 1 Tf 9 0 1.913 9 495.45 175.875 Tm 0 Tw (Drosophila)Tj /F1 1 Tf 9 0 0 9 317.37 165.075 Tm 0.1385 Tw (species invasion by the )Tj /F3 1 Tf 9 0 1.913 9 417.87 165.075 Tm 0 Tw (gypsy)Tj /F1 1 Tf 9 0 0 9 441.39 165.075 Tm ( )Tj 0.4165 0 TD 0.1385 Tw (endogenous retrovirus.)Tj -14.1965 -1.2 TD 0 Tw (Genetics)Tj /F3 1 Tf 9 0 1.913 9 352.83 154.275 Tm ( )Tj /F1 1 Tf 9 0 0 9 355.35 154.275 Tm -0.0008 Tw (160: 201-209.)Tj -4.8533 -1.2 TD 0.0109 Tc 0.1389 Tw [(Mendiola, M.V)85.4(., Bernales, I., and de la Cruz, F)115.6(.)0( 1994.)]TJ 0.6333 -1.2 TD 0.0336 Tc [(Dif)22.8(ferential roles of the transposon termini in )]TJ /F3 1 Tf 9 0 1.913 9 519.03 132.675 Tm 0 Tw (IS91)Tj /F1 1 Tf 9 0 0 9 317.37 121.875 Tm -0.0033 Tc -0.0694 Tw [(transposition. Proc. Natl. )54.4(Acad. Sci. USA. 91: 1922-1926.)]TJ -0.6333 -1.2 TD 0 Tc 0.0182 Tw [(Miller)54.7(, D.W)51.6(., and Miller)57.9(, L.K. 1982. )54.4(A)53.7( virus mutant with an)]TJ 0.6333 -1.2 TD -0.0137 Tc -0.0695 Tw (insertion of a )Tj /F3 1 Tf 9 0 1.913 9 367.65 100.275 Tm 0 Tw (copia)Tj /F1 1 Tf 9 0 0 9 388.53 100.275 Tm -0.0695 Tw (-like transposable element. Nature)Tj /F3 1 Tf 9 0 1.913 9 519.5701 100.275 Tm 0 Tc 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 521.3101 100.275 Tm -0.0137 Tc (299:)Tj ET endstream endobj 43 0 obj << /Type /Page /Parent 95 0 R /Resources 44 0 R /Contents 45 0 R /Thumb 82 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 44 0 obj << /ProcSet [ /PDF /Text ] /Font << /F1 114 0 R /F2 113 0 R /F3 128 0 R >> /ExtGState << /GS1 139 0 R /GS2 138 0 R >> /ColorSpace << /Cs8 112 0 R >> >> endobj 45 0 obj << /Length 17289 >> stream BT /F1 1 Tf 9 0 0 9 55.93 779.115 Tm 0 0 0 1 k /GS2 gs -0.0001 Tc -0.0003 Tw (14 Silva )Tj /F3 1 Tf 9 0 1.913 9 95.47 779.115 Tm 0 Tc (et al)Tj /F1 1 Tf 9 0 0 9 112.45 779.115 Tm 0 Tw (.)Tj /F2 1 Tf 37.9351 29.4096 -29.4096 37.9351 34.496 531.1378 Tm 2 Tr 0 0 0 0.45 K 0 J 0 j 0.576 w 10 M []0 d /Cs8 cs 0 scn /GS1 gs 0.0686 Tc -0.0001 Tw (PAGE PROOFS)Tj /F1 1 Tf 9 0 0 9 62.23 748.275 Tm 0 Tr 0 0 0 1 k /GS2 gs 0.0003 Tc 0 Tw (562-564.)Tj -0.6333 -1.2 TD 0.0446 Tc 0.1389 Tw (Misra, S., and Rio, D.C. 1990. Cytotype control of)Tj /F3 1 Tf 9 0 1.913 9 62.23 726.675 Tm 0 Tc 0.0066 Tw (Drosophila P)Tj /F1 1 Tf 9 0 0 9 113.83 726.675 Tm 0 Tw ( )Tj 0.2846 0 TD 0.0066 Tw (element transposition: the 66 kd protein is)Tj -6.018 -1.2 TD 0.0001 Tw [(a repressor of transposase activity)75.3(. Cell)]TJ /F3 1 Tf 9 0 1.913 9 219.13 715.875 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 221.59 715.875 Tm 0.0001 Tw (62: 269-284.)Tj -18.34 -1.2 TD 0.0461 Tc 0.1389 Tw [(Mizrokhi, L.J., and Mazo, )46.7(A.M. 1990. Evidence for)]TJ 0.6333 -1.2 TD 0.0109 Tc (horizontal transmission of the mobile element )Tj /F3 1 Tf 9 0 1.913 9 257.29 694.275 Tm 0 Tw (jockey)Tj /F1 1 Tf 9 0 0 9 62.23 683.475 Tm 0 Tc 0.1386 Tw (between distant )Tj /F3 1 Tf 9 0 1.913 9 130.27 683.475 Tm 0 Tw (Drosophila)Tj /F1 1 Tf 9 0 0 9 173.23 683.475 Tm ( )Tj 0.4166 0 TD 0.1386 Tw [(species. Proc. Natl. )51.1(Acad.)]TJ -12.7499 -1.2 TD -0.0004 Tw (Sci. USA.)Tj /F3 1 Tf 9 0 1.913 9 100.69 672.675 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 103.21 672.675 Tm -0.0004 Tw (87: 9216-9220.)Tj -5.1867 -2.4 TD -0.0051 Tc -0.0694 Tw [(Nekrutenko, )52(A., and Li, W)57.3(.H. 2001. )19.7(T)32.6(ransposable elements)]TJ 0.6333 -1.2 TD 0.0021 Tc 0.139 Tw [(are found in a large number of human protein-coding)]TJ T* 0 Tc -0.02 Tw [(genes. T)37.7(rends )-20(Genet.)]TJ /F3 1 Tf 9 0 1.913 9 148.75 629.475 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 151.27 629.475 Tm (17: 619-621.)Tj -10.5267 -1.2 TD 0.0304 Tc 0.1389 Tw [(Nouaud, D., and )49.9(Anxolabhre, D. 1997. )]TJ /F3 1 Tf 9 0 1.913 9 239.35 618.675 Tm 0 Tc 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 245.59 618.675 Tm ( )Tj 0.4473 0 TD 0.0304 Tc (element)Tj -20.8206 -1.2 TD 0.0089 Tc 0.1389 Tw (domestication: a stationary truncated )Tj /F3 1 Tf 9 0 1.913 9 219.79 607.875 Tm 0 Tc 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 225.91 607.875 Tm ( )Tj 0.4258 0 TD 0.0089 Tc 0.1389 Tw (element may)Tj -18.6125 -1.2 TD -0.0003 Tc -0.0694 Tw (encode a 66-kDa repressor-like protein in the )Tj /F3 1 Tf 9 0 1.913 9 240.31 597.075 Tm 0 Tw (Drosophila)Tj -19.5316 -1.2 TD 0.0009 Tc (montium)Tj /F1 1 Tf 9 0 0 9 96.73 586.275 Tm 0 Tc ( )Tj 0.4178 0 TD 0.0009 Tc 0.1389 Tw (species subgroup. Mol. Biol. Evol.)Tj /F3 1 Tf 9 0 1.913 9 240.85 586.275 Tm 0 Tc 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 244.63 586.275 Tm 0.0009 Tc 0.1389 Tw [(14: 1)74(132-)]TJ -20.2667 -1.2 TD 0 Tc 0 Tw (1)Tj 0.48 0 TD -0.0002 Tc (144.)Tj -1.1133 -1.2 TD 0 Tc 0.1101 Tw [(Nuzhdin, S.V)86.1(. 1999. Sure facts, speculations, and open)]TJ 0.6333 -1.2 TD 0.101 Tw (questions about the evolution of transposable element)Tj T* -0.0001 Tw [(copy number)53.3(. Genetica)]TJ /F3 1 Tf 9 0 1.913 9 154.75 543.075 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 157.27 543.075 Tm -0.0001 Tw (107: 129-137.)Tj -11.1933 -1.2 TD 0.0024 Tc 0.1389 Tw [(OBrochta, D.A., and Handler)53.8(, )53(A.M. 1988. Mobility of )]TJ /F3 1 Tf 9 0 1.913 9 277.33 532.275 Tm 0 Tc 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 62.23 521.475 Tm -0.0035 Tc -0.0695 Tw (elements in drosophilids and nondrosophilids. Proc. Natl.)Tj T* 0 Tc 0.0007 Tw (Acad. Sci. USA. 85: 6052-6056.)Tj -0.6333 -1.2 TD -0.0025 Tw [(Oosumi, )11.9(T)111(., Belknap, W)62.1(.R., and Garlick, B. 1995. )]TJ /F3 1 Tf 9 0 1.913 9 252.79 499.875 Tm 0 Tw (Mariner)Tj /F1 1 Tf 9 0 0 9 62.23 489.075 Tm -0.0001 Tw (transposons in humans. Nature)Tj /F3 1 Tf 9 0 1.913 9 187.27 489.075 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 189.73 489.075 Tm -0.0001 Tw (378: 672.)Tj -14.8 -1.2 TD -0.0042 Tc -0.0694 Tw [(Orgel, L.E., and Crick, F)110.3(.H. 1980. Selfish DNA: the ultimate)]TJ 0.6333 -1.2 TD 0 Tc 0.0007 Tw (parasite. Nature)Tj /F3 1 Tf 9 0 1.913 9 126.25 467.475 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 128.77 467.475 Tm 0.0007 Tw (284: 604-607.)Tj -8.0267 -1.2 TD 0.0735 Tw [(Pasyukova, E.G., Nuzhdin, S.V)94(., and Filatov)72.1(, D.A. 1998.)]TJ 0.6333 -1.2 TD 0.1026 Tw (The relationship between the rate of transposition and)Tj T* 0.1187 Tw (transposable element copy number for )Tj /F3 1 Tf 9 0 1.913 9 223.63 435.075 Tm 0 Tw (copia)Tj /F1 1 Tf 9 0 0 9 245.17 435.075 Tm ( )Tj 0.3967 0 TD (and )Tj /F3 1 Tf 9 0 1.913 9 267.31 435.075 Tm (Doc)Tj /F1 1 Tf 9 0 0 9 62.23 424.275 Tm 0.0089 Tc 0.1389 Tw (retrotransposons of )Tj /F3 1 Tf 9 0 1.913 9 146.35 424.275 Tm (Drosophila melanogaster)Tj /F1 1 Tf 9 0 0 9 249.43 424.275 Tm (. Genet.)Tj -20.8 -1.2 TD 0 Tc -0.0009 Tw [(Res. 72: 1-1)78.7(1.)]TJ -0.6333 -1.2 TD -0.0051 Tc -0.0694 Tw [(Plisson, )48.3(A., )18(T)112.6(eysset, L., Chalvet, F)113.4(., Kim, )52.7(A., Prudhomme,)]TJ 0.6333 -1.2 TD 0 Tc 0.0076 Tw [(N., )23.6(T)111(erzian, C., and Bucheton, )52.5(A. 1997. )58.2(About the origin)]TJ T* -0.0104 Tc -0.0694 Tw (of retroviruses and the co-evolution of the )Tj /F3 1 Tf 9 0 1.913 9 221.83 381.075 Tm 0 Tw (gypsy)Tj /F1 1 Tf 9 0 0 9 244.87 381.075 Tm 0 Tc ( )Tj 0.1982 0 TD -0.0104 Tc (retrovirus)Tj -20.4915 -1.2 TD 0 Tc 0.0392 Tw (with the Drosophila)Tj /F3 1 Tf 9 0 1.913 9 139.45 370.275 Tm 0 Tw ( )Tj 0.3172 0 TD (flamenco)Tj /F1 1 Tf 9 0 0 9 178.81 370.275 Tm ( )Tj 0.3172 0 TD 0.0392 Tw (host gene. Genetica)Tj /F3 1 Tf 9 0 1.913 9 262.93 370.275 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 265.81 370.275 Tm (100:)Tj -22.62 -1.2 TD -0.0004 Tc (29-37.)Tj -0.6333 -1.2 TD 0 Tc 0.1133 Tw [(Pinsker)54(, W)53.3(., Haring, E., Hagemann, S., and Miller)51.3(, W)60(.J.)]TJ 0.6333 -1.2 TD -0.0026 Tc -0.0695 Tw [(2001. )21.4(The evolutionary life history of )]TJ /F3 1 Tf 9 0 1.913 9 204.43 337.875 Tm 0 Tc 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 210.43 337.875 Tm ( )Tj 0.2059 0 TD -0.0026 Tc -0.0695 Tw (transposons: from)Tj -16.6726 -1.2 TD 0.0695 Tc 0.2077 Tw (horizontal invaders to domesticated neogenes.)Tj T* 0 Tc 0 Tw (Chromosoma)Tj /F3 1 Tf 9 0 1.913 9 116.23 316.275 Tm ( )Tj /F1 1 Tf 9 0 0 9 118.69 316.275 Tm (1)Tj 0.4867 0 TD (10: 148-158.)Tj -7.3933 -1.2 TD 0.0707 Tw [(Plasterk, R.H. 1996. )11.4(The )]TJ /F3 1 Tf 9 0 1.913 9 160.03 305.475 Tm -0.0977 Tc 0 Tw [(Tc)-97.7(1)]TJ /F1 1 Tf 9 0 0 9 174.13 305.475 Tm 0 Tc (/)Tj /F3 1 Tf 9 0 1.913 9 176.65 305.475 Tm (mariner)Tj /F1 1 Tf 9 0 0 9 207.13 305.475 Tm ( )Tj 0.3487 0 TD 0.0707 Tw [(transposon family)68.7(.)]TJ -16.4487 -1.2 TD -0.0004 Tw [(Curr )21.6(T)111(op Microbiol. Immunol.)]TJ /F3 1 Tf 9 0 1.913 9 177.07 294.675 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 179.53 294.675 Tm -0.0004 Tw (204: 125-143.)Tj -13.6667 -1.2 TD 0.0116 Tw [(Prudhomme, N., Gans, M., Masson, M., )20(T)111(erzian, C., and)]TJ 0.6333 -1.2 TD 0.0071 Tc 0.0811 Tw [(Bucheton, A. )-57.8(1995. )]TJ /F3 1 Tf 9 0 1.913 9 145.75 273.075 Tm 0 Tw (Flamenco)Tj /F1 1 Tf 9 0 0 9 185.77 273.075 Tm 0.1389 Tw (, a gene controlling the)Tj /F3 1 Tf 9 0 1.913 9 62.23 262.275 Tm 0 Tc 0 Tw (gypsy)Tj /F1 1 Tf 9 0 0 9 85.69 262.275 Tm ( )Tj 0.3781 0 TD 0.1001 Tw (retrovirus of )Tj /F3 1 Tf 9 0 1.913 9 140.95 262.275 Tm (Drosophila melanogaster)Tj /F1 1 Tf 9 0 0 9 241.93 262.275 Tm (. Genetics)Tj -19.9667 -1.2 TD 0.0021 Tw [(139: 697-71)72.5(1.)]TJ -0.6333 -1.2 TD -0.0222 Tw [(Quesneville, H., and )48.8(Anxolabhre, D. 1997. )57.5(A)53.7( simulation)]TJ 0.6333 -1.2 TD 0 Tw (of )Tj /F3 1 Tf 9 0 1.913 9 72.19 229.875 Tm (P)Tj /F1 1 Tf 9 0 0 9 78.19 229.875 Tm -0.0002 Tw ( element horizontal transfer in )Tj /F3 1 Tf 9 0 1.913 9 199.27 229.875 Tm 0 Tw (Drosophila)Tj /F1 1 Tf 9 0 0 9 242.29 229.875 Tm -0.0002 Tw (. Genetica)Tj -20.0067 -1.2 TD 0.0004 Tw (100: 295-307.)Tj -0.6333 -1.2 TD 0.0074 Tc 0.1389 Tw (Rasmusson, K.E., Raymond, J.D., and Simmons, M.J.)Tj 0.6333 -1.2 TD 0.0077 Tc (1993. Repression of hybrid dysgenesis in )Tj /F3 1 Tf 9 0 1.913 9 239.65 197.475 Tm 0 Tw (Drosophila)Tj -19.4583 -1.2 TD 0.0561 Tc (melanogaster)Tj /F1 1 Tf 9 0 0 9 122.83 186.675 Tm 0 Tc ( )Tj 0.4731 0 TD 0.0561 Tc 0.139 Tw (by individual naturally occurring )Tj /F3 1 Tf 9 0 1.913 9 277.33 186.675 Tm 0 Tc 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 62.23 175.875 Tm 0.0006 Tw (elements. Genetics)Tj /F3 1 Tf 9 0 1.913 9 139.27 175.875 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 141.73 175.875 Tm 0.0006 Tw (133: 605-622.)Tj -9.4667 -1.2 TD 0.0623 Tc 0.1389 Tw [(Remsen, J., and OGrady)71.2(, P)128.8(.)0( 2002. Phylogeny of)]TJ /F3 1 Tf 9 0 1.913 9 62.23 154.275 Tm 0 Tc 0 Tw (Drosophilinae)Tj /F1 1 Tf 9 0 0 9 117.25 154.275 Tm ( )Tj 0.3755 0 TD 0.0975 Tw (\(Diptera: Drosophilidae\), with comments)Tj -6.4888 -1.2 TD 0.0354 Tc 0.139 Tw (on combined analysis and character support. Mol.)Tj T* 0 Tc 0.0005 Tw (Phylogenet. Evol.)Tj /F3 1 Tf 9 0 1.913 9 132.25 132.675 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 134.77 132.675 Tm 0.0005 Tw (24: 249-264.)Tj -8.6933 -1.2 TD 0.0025 Tc 0.1389 Tw (Robertson, H.M. 1997. Multiple )Tj /F3 1 Tf 9 0 1.913 9 188.83 121.875 Tm 0 Tw (mariner)Tj /F1 1 Tf 9 0 0 9 219.43 121.875 Tm 0 Tc ( )Tj 0.4194 0 TD 0.0025 Tc 0.1389 Tw (transposons in)Tj -17.886 -1.2 TD 0 Tc 0.037 Tw (flatworms and hydras are related to those of insects. J.)Tj T* -0.0003 Tw (Hered. 88: 195-201.)Tj 27.0933 72 TD -0.0061 Tc -0.0694 Tw (Robertson, H.M., and Lampe, D.J. 1995. Recent horizontal)Tj 0.6267 -1.2 TD 0 Tc 0.0632 Tw (transfer of a )Tj /F3 1 Tf 9 0 1.913 9 363.97 737.475 Tm 0 Tw (mariner)Tj /F1 1 Tf 9 0 0 9 394.45 737.475 Tm ( )Tj 0.3412 0 TD 0.0632 Tw (transposable element among and)Tj -9.5345 -1.2 TD -0.009 Tc -0.0694 Tw (between Diptera and Neuroptera. Mol. Biol. Evol.)Tj /F3 1 Tf 9 0 1.913 9 499.15 726.675 Tm 0 Tc 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 500.95 726.675 Tm -0.009 Tc -0.0694 Tw (12: 850-)Tj -21.0267 -1.2 TD -0.0006 Tc 0 Tw (862.)Tj -0.6267 -1.2 TD 0.0009 Tc 0.1389 Tw (Robertson, H.M., and MacLeod, E.G. 1993. Five major)Tj 0.6267 -1.2 TD 0 Tc -0.0463 Tw (subfamilies of )Tj /F3 1 Tf 9 0 1.913 9 368.41 694.275 Tm 0 Tw (mariner)Tj /F1 1 Tf 9 0 0 9 398.89 694.275 Tm ( )Tj 0.2317 0 TD -0.0463 Tw (transposable elements in insects,)Tj -9.9183 -1.2 TD 0.0548 Tc 0.1389 Tw [(including the Mediterranean fruit fly)70.9(, and related)]TJ T* 0 Tc 0.0003 Tw (arthropods. Insect. Mol. Biol.)Tj /F3 1 Tf 9 0 1.913 9 425.77 672.675 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 428.23 672.675 Tm 0.0003 Tw (2: 125-139.)Tj -13.5733 -1.2 TD 0.0342 Tc 0.1389 Tw [(Robertson, H.M., Soto-Adames, F)110(.N., W)41.9(a)0(lden, K.K.,)]TJ 0.6267 -1.2 TD 0 Tc 0 Tw (A)Tj 0.6667 0 TD 0.0175 Tc 0.139 Tw [(vancini, R.M., and Lampe, D.J. 2002. )19.3(The )]TJ /F3 1 Tf 9 0 1.913 9 501.37 651.075 Tm 0 Tw (mariner)Tj /F1 1 Tf 9 0 0 9 311.71 640.275 Tm 0 Tc 0.0367 Tw (transposons of animals: horizontally jumping genes. In:)Tj 0 -1.2 TD 0.0949 Tw [(Horizontal Gene )12.9(T)44.3(ransfer)52(. M. Syvanen, and C.I. Kado,)]TJ T* -0.0005 Tw [(eds. )54.2(Academic Press, San Diego, CA.)]TJ -0.6267 -1.2 TD 0.1224 Tw [(Roche, S.E., Schif)19.9(f, M., and Rio, D.C. 1995. )]TJ /F3 1 Tf 9 0 1.913 9 491.83 607.875 Tm 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 497.83 607.875 Tm (-element)Tj -20.68 -1.2 TD 0.0695 Tc 0.8243 Tw (repressor autoregulation involves germ-line)Tj T* 0.002 Tc 0.1389 Tw (transcriptional repression and reduction of third intron)Tj T* 0 Tc -0.0005 Tw [(splicing. Genes Dev)77.7(. 9: 1278-1288.)]TJ -0.6267 -1.2 TD 0.0039 Tw [(Ronsseray)72.4(, S., Boivin, )54.4(A., and )54.8(Anxolabhre, D. 2001. )]TJ /F3 1 Tf 9 0 1.913 9 523.81 564.675 Tm 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 529.81 564.675 Tm (-)Tj -24.2333 -1.2 TD 0.0313 Tc 0.1389 Tw (Element repression in )Tj /F3 1 Tf 9 0 1.913 9 411.19 553.875 Tm (Drosophila melanogaster)Tj /F1 1 Tf 9 0 0 9 519.01 553.875 Tm 0 Tc 0 Tw ( )Tj 0.4482 0 TD 0.0313 Tc (by)Tj -23.4816 -1.2 TD -0.0067 Tc -0.0695 Tw (variegating clusters of P-lacZ-white transgenes. Genetics)Tj T* 0 Tc -0.0008 Tw (159: 1631-1642.)Tj -0.6267 -1.2 TD -0.0512 Tw [(Ronsseray)72.4(, S., Lehmann, M., and )59.2(Anxolabhre, D. 1989.)]TJ 0.6267 -1.2 TD -0.0682 Tw (Copy number and distribution of )Tj /F3 1 Tf 9 0 1.913 9 438.73 510.675 Tm 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 444.73 510.675 Tm ( )Tj 0.2098 0 TD (and )Tj /F3 1 Tf 9 0 1.913 9 463.51 510.675 Tm (I)Tj /F1 1 Tf 9 0 0 9 466.03 510.675 Tm ( )Tj 0.2098 0 TD -0.0682 Tw (mobile elements)Tj -17.3564 -1.2 TD 0 Tw (in )Tj /F3 1 Tf 9 0 1.913 9 322.21 499.875 Tm 0.1107 Tw (Drosophila melanogaster)Tj /F1 1 Tf 9 0 0 9 423.25 499.875 Tm 0 Tw ( )Tj 0.3887 0 TD 0.1107 Tw (populations. Chromosoma)Tj -12.782 -1.2 TD 0.0009 Tw (98: 207-214.)Tj -0.6267 -1.2 TD -0.0047 Tc -0.0695 Tw [(Ronsseray)76.6(, S., Marin, L., Lehmann, M., and )54.3(Anxolabhre,)]TJ 0.6267 -1.2 TD 0 Tc -0.0083 Tw (D. 1998. Repression of hybrid dysgenesis in )Tj /F3 1 Tf 9 0 1.913 9 489.79 467.475 Tm 0 Tw (Drosophila)Tj -19.5316 -1.2 TD 0.0006 Tc (melanogaster)Tj /F1 1 Tf 9 0 0 9 366.31 456.675 Tm 0 Tc ( )Tj 0.4175 0 TD 0.0006 Tc 0.1389 Tw [(by combinations of telomeric )]TJ /F3 1 Tf 9 0 1.913 9 491.77 456.675 Tm 0 Tc 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 497.77 456.675 Tm 0.0006 Tc (-element)Tj -20.6733 -1.2 TD 0 Tc 0.0647 Tw (reporters and naturally occurring )Tj /F3 1 Tf 9 0 1.913 9 446.11 445.875 Tm 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 452.11 445.875 Tm ( )Tj 0.3427 0 TD 0.0647 Tw (elements. Genetics)Tj -15.9427 -1.2 TD -0.0008 Tw (149: 1857-1866.)Tj -0.6267 -1.2 TD -0.0136 Tc -0.0695 Tw [(Rubin, E.J., )57.9(Akerley)72.1(, B.J., Novik, V)92(.N., Lampe, D.J., Husson,)]TJ 0.6267 -1.2 TD 0 Tc 0.0137 Tw (R.N., and Mekalanos, J.J. 1999. )Tj /F3 1 Tf 9 0 1.913 9 442.93 413.475 Tm (In vivo)Tj /F1 1 Tf 9 0 0 9 469.03 413.475 Tm 0 Tw ( )Tj 0.2917 0 TD 0.0137 Tw (transposition of)Tj /F3 1 Tf 9 0 1.913 9 311.71 402.675 Tm 0.0661 Tc 0 Tw (mariner)Tj /F1 1 Tf 9 0 0 9 346.33 402.675 Tm 0.1389 Tw (-based elements in enteric bacteria and)Tj -3.8467 -1.2 TD -0.0084 Tc -0.0694 Tw [(mycobacteria. Proc. Natl. )55.6(Acad. Sci. USA. 96: 1645-1650.)]TJ -0.6267 -1.2 TD 0.0695 Tc 0.1761 Tw [(Rubin, G.M., and Spradling, )59.8(A.C. 1982. Genetic)]TJ 0.6267 -1.2 TD 0 Tc 0.0219 Tw (transformation of )Tj /F3 1 Tf 9 0 1.913 9 382.15 370.275 Tm 0 Tw (Drosophila)Tj /F1 1 Tf 9 0 0 9 425.17 370.275 Tm ( )Tj 0.2999 0 TD 0.0219 Tw (with transposable element)Tj -12.9066 -1.2 TD 0.0009 Tw (vectors. Science)Tj /F3 1 Tf 9 0 1.913 9 377.77 359.475 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 380.23 359.475 Tm 0.0009 Tw (218: 348-353.)Tj -8.24 -1.2 TD 0.0345 Tw [(Shao, H. and )18.6(T)37.7(u, Z. 2001. Expanding the diversity of the)]TJ 0.6267 -1.2 TD 0.0049 Tc 0.1389 Tw [(IS630-T)111.4(c1-mariner superfamily: discovery of a unique)]TJ T* -0.0087 Tc -0.0695 Tw (DD37E transposon and reclassification of the DD37D and)Tj T* 0 Tc -0.0005 Tw [(DD39D transposons. Genetics 159: 1)74.5(103-1)70.4(1)76(15.)]TJ -0.6267 -1.2 TD -0.0293 Tw [(Sherman, )57.1(A., Dawson, )57.2(A., Mather)57.1(, C., Gilhooley)68.2(, H., Li, )18.2(Y)127(.)0(,)]TJ 0.6267 -1.2 TD 0.0695 Tc 0.1487 Tw (Mitchell, R., Finnegan, D., and Sang, H. 1998.)Tj T* 0 Tc 0 Tw (T)Tj 0.5733 0 TD -0.0426 Tw (ransposition of the )Tj /F3 1 Tf 9 0 1.913 9 391.75 283.875 Tm 0 Tw (Drosophila)Tj /F1 1 Tf 9 0 0 9 434.83 283.875 Tm ( )Tj 0.2354 0 TD (element )Tj /F3 1 Tf 9 0 1.913 9 471.07 283.875 Tm (mariner)Tj /F1 1 Tf 9 0 0 9 501.55 283.875 Tm ( )Tj 0.2354 0 TD -0.0426 Tw (into the)Tj -21.3287 -1.2 TD -0.0004 Tw (chicken germ line. Nat. Biotechnol.)Tj /F3 1 Tf 9 0 1.913 9 450.25 273.075 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 452.77 273.075 Tm -0.0004 Tw (16: 1050-1053.)Tj -16.3 -1.2 TD 0.0017 Tw [(Siebel, C.W)54.1(., Kanaar)53.1(, R., and Rio, D.C. 1994. Regulation)]TJ 0.6267 -1.2 TD -0.0329 Tw (of tissue-specific)Tj /F3 1 Tf 9 0 1.913 9 377.95 251.475 Tm -0.0329 Tc 0 Tw ( P)Tj /F1 1 Tf 9 0 0 9 386.17 251.475 Tm 0 Tc -0.0329 Tw (-element pre-mRNA splicing requires)Tj -8.2733 -1.2 TD -0.0296 Tw [(the RNA-binding protein PSI. Genes Dev)71(. 8: 1713-1725.)]TJ -0.6267 -1.2 TD 0.0029 Tc 0.1389 Tw (Silva, J.C. 2000 Population genetics of )Tj /F3 1 Tf 9 0 1.913 9 471.19 229.875 Tm 0 Tc 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 477.19 229.875 Tm ( )Tj 0.4198 0 TD 0.0029 Tc (transposable)Tj -18.8064 -1.2 TD 0.026 Tc 0.1389 Tw (elements and their host species, with emphasis on)Tj /F3 1 Tf 9 0 1.913 9 311.71 208.275 Tm -0.0007 Tc -0.0695 Tw (Drosophila willistoni)Tj /F1 1 Tf 9 0 0 9 389.95 208.275 Tm 0 Tc 0 Tw ( )Tj 0.2078 0 TD -0.0007 Tc (and )Tj /F3 1 Tf 9 0 1.913 9 408.73 208.275 Tm -0.0695 Tw (Drosophila sturtevanti)Tj /F1 1 Tf 9 0 0 9 494.95 208.275 Tm (, Doctoral)Tj -20.36 -1.2 TD 0 Tc -0.0003 Tw [(Thesis, )20.7(The University of )52.4(Arizona, )19.1(T)31(ucson.)]TJ -0.6267 -1.2 TD -0.0054 Tc -0.0694 Tw (Silva, J.C., and Kidwell, M.G. 2000. Horizontal transfer and)Tj 0.6267 -1.2 TD 0 Tc 0.006 Tw (selection in the evolution of )Tj /F3 1 Tf 9 0 1.913 9 423.07 175.875 Tm 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 429.07 175.875 Tm ( )Tj 0.284 0 TD 0.006 Tw (elements. Mol. Biol. Evol.)Tj -13.324 -1.2 TD -0.0002 Tw (17: 1542-1557.)Tj -0.6267 -2.4 TD 0.1374 Tw (Silva, J.C., Shabalina, S.A., Harris, D.G., Spouge, J.L.,)Tj 0.6267 -1.2 TD 0.0084 Tc 0.1389 Tw [(and Kondrashov)72(, )58.4(A.S. 2003. Conserved fragments of)]TJ T* -0.0055 Tc -0.0695 Tw (transposable elements in intergenic regions: evidence for)Tj T* 0.0676 Tc 0.1389 Tw (widespread recruitment of MIR- and L2-derived)Tj T* 0.0264 Tc 0.139 Tw [(sequences within the mouse and human genomes.)]TJ ET endstream endobj 46 0 obj << /Type /Page /Parent 95 0 R /Resources 47 0 R /Contents 48 0 R /Thumb 84 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 47 0 obj << /ProcSet [ /PDF /Text ] /Font << /F1 114 0 R /F2 113 0 R /F3 128 0 R >> /ExtGState << /GS1 139 0 R /GS2 138 0 R >> /ColorSpace << /Cs8 112 0 R >> >> endobj 48 0 obj << /Length 11916 >> stream BT /F1 1 Tf 9 0 0 9 337.47 780.5551 Tm 0 0 0 1 k /GS2 gs 0 Tc -0.0155 Tw [(Horizontal Transfer of Transposable Elements 15)]TJ /F2 1 Tf 37.9351 29.4096 -29.4096 37.9351 42.9423 542.4378 Tm 2 Tr 0 0 0 0.45 K 0 J 0 j 0.576 w 10 M []0 d /Cs8 cs 0 scn /GS1 gs 0.0686 Tc -0.0001 Tw (PAGE PROOFS)Tj /F1 1 Tf 9 0 0 9 67.83 748.275 Tm 0 Tr 0 0 0 1 k /GS2 gs 0 Tc 0.0007 Tw (Genet. Res. \(in press\).)Tj -0.6267 -2.4 TD 0.0572 Tc 0.1389 Tw (Simmons, G.M. 1992. Horizontal transfer of )Tj /F3 1 Tf 9 0 1.913 9 267.39 726.675 Tm 0 Tw (hobo)Tj /F1 1 Tf 9 0 0 9 67.83 715.875 Tm 0.0695 Tc 0.5068 Tw (transposable elements within the )Tj /F3 1 Tf 9 0 1.913 9 240.27 715.875 Tm 0 Tw (Drosophila)Tj -18.9049 -1.2 TD 0.0199 Tc (melanogaster)Tj /F1 1 Tf 9 0 0 9 124.53 705.0751 Tm 0 Tc ( )Tj 0.4369 0 TD 0.02 Tc 0.1389 Tw (species complex: evidence from DNA)Tj -6.7369 -1.2 TD 0 Tc -0.0001 Tw (sequencing. Mol. Biol. Evol.)Tj /F3 1 Tf 9 0 1.913 9 178.41 694.275 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 180.87 694.275 Tm -0.0001 Tw (9: 1050-1060.)Tj -13.1867 -1.2 TD 0.0083 Tc 0.1389 Tw [(Simmons, M.J., and Bucholz, L.M. 1985. )19.3(T)32.6(ransposase)]TJ 0.6267 -1.2 TD 0 Tc -0.0558 Tw (titration in )Tj /F3 1 Tf 9 0 1.913 9 108.33 672.675 Tm (Drosophila melanogaster)Tj /F1 1 Tf 9 0 0 9 207.87 672.675 Tm (: a model of cytotype)Tj -15.56 -1.2 TD -0.0037 Tc -0.0695 Tw [(in the P-M system of hybrid dysgenesis. Proc. Natl. )52.4(Acad.)]TJ T* 0 Tc 0.0001 Tw [(Sci. USA. 82: 81)77.5(19-8123.)]TJ -0.6267 -1.2 TD 0.0005 Tc 0.1389 Tw [(Simmons, M.J., Haley)72.2(, K.J., and )23.9(Thompson, S.J. 2002.)]TJ 0.6267 -1.2 TD 0 Tc -0.0277 Tw (Maternal transmission of )Tj /F3 1 Tf 9 0 1.913 9 167.67 629.475 Tm 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 173.67 629.475 Tm ( )Tj 0.2503 0 TD -0.0277 Tw (element transposase activity)Tj -12.0103 -1.2 TD -0.0011 Tc 0 Tw (in )Tj /F3 1 Tf 9 0 1.913 9 76.71 618.675 Tm -0.0694 Tw (Drosophila melanogaster)Tj /F1 1 Tf 9 0 0 9 175.89 618.675 Tm 0 Tc 0 Tw ( )Tj 0.2075 0 TD -0.0011 Tc -0.0694 Tw (depends on the last )Tj /F3 1 Tf 9 0 1.913 9 256.17 618.675 Tm 0 Tc 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 262.17 618.675 Tm ( )Tj 0.2075 0 TD -0.0011 Tc (intron.)Tj -21.8008 -1.2 TD 0 Tc 0.0001 Tw [(Proc. Natl. )52.9(Acad. Sci. USA. 99: 9306-9309.)]TJ -0.6267 -1.2 TD -0.0019 Tc -0.0694 Tw (Simmons, M.J., Raymond, J.D., Grimes, C.D., Belinco, C.,)Tj 0.6267 -1.2 TD 0.0215 Tc 0.1389 Tw [(Haake, B.C., Jordan, M., Lund, C., Ojala, )14.2(T)112.5(.A., and)]TJ T* 0 Tc -0.0282 Tw [(Papermaster)50.7(, D. 1996. Repression of hybrid dysgenesis)]TJ T* 0.0215 Tc 0 Tw (in )Tj /F3 1 Tf 9 0 1.913 9 79.17 564.675 Tm 0.1389 Tw (Drosophila melanogaster)Tj /F1 1 Tf 9 0 0 9 184.95 564.675 Tm 0 Tc 0 Tw ( )Tj 0.4384 0 TD 0.0215 Tc 0.1389 Tw (by heat-shock-inducible)Tj -13.4518 -1.2 TD -0.0109 Tc -0.0694 Tw (sense and antisense )Tj /F3 1 Tf 9 0 1.913 9 149.07 553.875 Tm 0 Tc 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 155.01 553.875 Tm -0.0109 Tc -0.0694 Tw (-element constructs. Genetics)Tj /F3 1 Tf 9 0 1.913 9 269.97 553.875 Tm 0 Tc 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 271.77 553.875 Tm -0.0109 Tc (144:)Tj -22.66 -1.2 TD 0.0001 Tc (1529-1544.)Tj -0.6267 -1.2 TD 0 Tc -0.0605 Tw [(Simonelig, M., and )57.6(Anxolabhre, D. 1991. )49.3(A)53.7( )]TJ /F3 1 Tf 9 0 1.913 9 239.49 532.275 Tm 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 245.49 532.275 Tm ( )Tj 0.2175 0 TD -0.0605 Tw (element of)Tj /F3 1 Tf 9 0 1.913 9 67.83 521.475 Tm -0.0056 Tc -0.0694 Tw (Scaptomyza pallida)Tj /F1 1 Tf 9 0 0 9 144.33 521.475 Tm 0 Tc 0 Tw ( )Tj 0.203 0 TD -0.0056 Tc -0.0694 Tw (is active in )Tj /F3 1 Tf 9 0 1.913 9 188.19 521.475 Tm (Drosophila melanogaster)Tj /F1 1 Tf 9 0 0 9 286.47 521.475 Tm 0 Tc 0 Tw (.)Tj -24.2933 -1.2 TD 0.0001 Tw [(Proc. Natl. )52.9(Acad. Sci. USA. 88: 6102-6106.)]TJ -0.6267 -1.2 TD 0.0341 Tc 0.1389 Tw [(Smit, )52.8(A.F)118.3(., and Riggs, )52.7(A.D. 1996. )]TJ /F3 1 Tf 9 0 1.913 9 213.21 499.875 Tm 0 Tc 0 Tw (T)Tj 0.64 0 TD 0.0341 Tc (iggers)Tj /F1 1 Tf 9 0 0 9 245.31 499.875 Tm 0 Tc ( )Tj 0.451 0 TD 0.0341 Tc 0.1389 Tw (and DNA)Tj -20.171 -1.2 TD 0.0083 Tc (transposon fossils in the human genome. Proc. Natl.)Tj T* 0 Tc 0.0006 Tw (Acad. Sci. USA. 93: 1443-1448.)Tj -0.6267 -1.2 TD -0.0022 Tc -0.0695 Tw [(Spradling, )52.5(A.C., Stern, D., Beaton, )54(A., Rhem, E.J., Laverty)75.3(,)]TJ 0.6267 -1.2 TD 0 Tc 0 Tw (T)Tj 0.5 0 TD 0.1132 Tw [(., Mozden, N., Misra, S., and Rubin, G.M. 1999. )15.6(The)]TJ -0.5 -1.2 TD 0.0062 Tc 0.1389 Tw (Berkeley Drosophila Genome Project gene disruption)Tj T* -0.0042 Tc -0.0694 Tw (project: Single )Tj /F3 1 Tf 9 0 1.913 9 125.55 435.075 Tm 0 Tc 0 Tw (P)Tj /F1 1 Tf 9 0 0 9 131.49 435.075 Tm -0.0042 Tc -0.0694 Tw (-element insertions mutating 25% of vital)Tj /F3 1 Tf 9 0 1.913 9 67.83 424.275 Tm 0 Tc 0 Tw (Drosophila)Tj /F1 1 Tf 9 0 0 9 110.85 424.275 Tm -0.0003 Tw ( genes. Genetics)Tj /F3 1 Tf 9 0 1.913 9 178.41 424.275 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 180.87 424.275 Tm -0.0003 Tw (153: 135-177.)Tj -13.1867 -1.2 TD -0.0446 Tw [(Stuart-Rogers, C., and Flavell, )55.4(A.J. 2001. )18.5(The evolution of)]TJ /F3 1 Tf 9 0 1.913 9 67.83 402.675 Tm -0.0777 Tc 0 Tw [(Ty)-76.2(1)]TJ /F1 1 Tf 9 0 0 9 82.17 402.675 Tm 0 Tc (-)Tj /F3 1 Tf 9 0 1.913 9 85.17 402.675 Tm -0.0015 Tc (copia)Tj /F1 1 Tf 9 0 0 9 106.59 402.675 Tm 0 Tc ( )Tj 0.207 0 TD -0.0015 Tc -0.0695 Tw (group retrotransposons in gymnosperms. Mol.)Tj -4.5137 -1.2 TD 0 Tc -0.0003 Tw (Biol. Evol.)Tj /F3 1 Tf 9 0 1.913 9 107.85 391.875 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 110.37 391.875 Tm -0.0003 Tw (18: 155-163.)Tj -5.3533 -1.2 TD 0 Tw (T)Tj 0.4867 0 TD -0.0115 Tc -0.0695 Tw [(erzian, C., Ferraz, C., Demaille, J., and Bucheton, )52.7(A. 2000.)]TJ 0.14 -1.2 TD 0.0127 Tc 0.1389 Tw (Evolution of the )Tj /F3 1 Tf 9 0 1.913 9 138.09 370.275 Tm 0 Tw (Gypsy)Tj /F1 1 Tf 9 0 0 9 164.13 370.275 Tm 0 Tc ( )Tj 0.4296 0 TD 0.0127 Tc 0.1389 Tw (endogenous retrovirus in the)Tj /F3 1 Tf 9 0 1.913 9 67.83 359.475 Tm 0 Tc 0.0275 Tw (Drosophila melanogaster)Tj /F1 1 Tf 9 0 0 9 168.15 359.475 Tm 0 Tw ( )Tj 0.3055 0 TD 0.0275 Tw (subgroup. Mol. Biol. Evol.)Tj /F3 1 Tf 9 0 1.913 9 273.69 359.475 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 276.45 359.475 Tm (17:)Tj -23.18 -1.2 TD 0.0003 Tc (908-914.)Tj -0.6267 -1.2 TD 0 Tc (V)Tj 0.64 0 TD 0.0437 Tc 0.1389 Tw [(azquez-Manrique, R.P)127.9(., Hernandez, M., Martnez-)]TJ -0.0133 -1.2 TD 0 Tc 0.1386 Tw (Sebastin, M.J., and de Frutos, R. 2000. Evolution of)Tj /F3 1 Tf 9 0 1.913 9 67.83 316.275 Tm 0 Tw (gypsy)Tj /F1 1 Tf 9 0 0 9 91.35 316.275 Tm ( )Tj 0.296 0 TD 0.018 Tw (endogenous retrovirus in the )Tj /F3 1 Tf 9 0 1.913 9 211.23 316.275 Tm (Drosophila obscura)Tj /F1 1 Tf 9 0 0 9 317.37 748.275 Tm -0.0005 Tw (species group. Mol. Biol. Evol.)Tj /F3 1 Tf 9 0 1.913 9 437.91 748.275 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 440.37 748.275 Tm -0.0005 Tw [(17: 1)70.2(185-1)77(193.)]TJ -14.3 -1.2 TD 0 Tw (V)Tj 0.6533 0 TD -0.0459 Tw [(ieira, C., and Bimont, C. 1997. )20.3(T)31(ransposition rate of the)]TJ /F3 1 Tf 9 0 1.913 9 317.37 726.675 Tm 0 Tw (412)Tj /F1 1 Tf 9 0 0 9 332.37 726.675 Tm ( )Tj 0.3976 0 TD 0.1196 Tw (retrotransposable element is independent of copy)Tj -2.0643 -1.2 TD 0.12 Tw (number in natural populations of )Tj /F3 1 Tf 9 0 1.913 9 453.87 715.875 Tm (Drosophila simulans)Tj /F1 1 Tf 9 0 0 9 535.9501 715.875 Tm 0 Tw (.)Tj -24.2867 -1.2 TD -0.0003 Tw (Mol. Biol. Evol.)Tj /F3 1 Tf 9 0 1.913 9 376.83 705.0751 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 379.35 705.0751 Tm -0.0003 Tw (14: 185-188.)Tj -7.52 -1.2 TD 0 Tw (V)Tj 0.6533 0 TD -0.0086 Tw (ieira, C., Lepetit, D., Dumont, S., and Bimont, C. 1999.)Tj -0.02 -1.2 TD 0 Tw (W)Tj 0.9 0 TD -0.0035 Tw (ake up of transposable elements following )Tj /F3 1 Tf 9 0 1.913 9 495.45 683.475 Tm 0 Tw (Drosophila)Tj -19.5316 -1.2 TD 0.0128 Tc (simulans)Tj /F1 1 Tf 9 0 0 9 353.79 672.675 Tm 0 Tc ( )Tj 0.4297 0 TD 0.0128 Tc 0.1389 Tw (worldwide colonization. Mol. Biol. Evol.)Tj /F3 1 Tf 9 0 1.913 9 521.85 672.675 Tm 0 Tc 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 525.6901 672.675 Tm 0.0128 Tc (16:)Tj -23.1467 -1.2 TD 0.0001 Tc (1251-1255.)Tj -0.6333 -1.2 TD 0 Tc (V)Tj 0.6667 0 TD 0.0175 Tc 0.1389 Tw (ilela, C.C. 1999. Is )Tj /F3 1 Tf 9 0 1.913 9 402.03 651.075 Tm (Zaprionus indianus)Tj /F1 1 Tf 9 0 0 9 482.19 651.075 Tm 0 Tc 0 Tw ( )Tj 0.4344 0 TD 0.0175 Tc 0.1389 Tw (Gupta, 1970)Tj -18.7478 -1.2 TD 0.0614 Tc (\(Diptera, Drosophilidea\) currently colonizing the)Tj T* 0 Tc 0.0552 Tw (Neotropical region? Drosophila Information Service)Tj /F3 1 Tf 9 0 1.913 9 522.9301 629.475 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 525.9301 629.475 Tm (82:)Tj -23.1733 -1.2 TD -0.0004 Tc (37-39.)Tj -0.6333 -1.2 TD 0 Tc (V)Tj 0.6333 0 TD 0.0138 Tc 0.1389 Tw [(olf)24(f, J.N., Korting, C., and Schartl, M. 2000. Multiple)]TJ 0 -1.2 TD 0.0247 Tc [(lineages of the non-L)73.7(TR retrotransposon )]TJ /F3 1 Tf 9 0 1.913 9 495.8701 597.075 Tm 0 Tw (Rex1)Tj /F1 1 Tf 9 0 0 9 517.77 597.075 Tm 0 Tc ( )Tj 0.4416 0 TD 0.0247 Tc (with)Tj -22.7082 -1.2 TD 0 Tc -0.0209 Tw (varying success in invading fish genomes. Mol Biol Evol)Tj T* -0.0002 Tw (17: 1673-1684.)Tj -0.6333 -1.2 TD 0 Tw (V)Tj 0.6667 0 TD 0.0571 Tc 0.1389 Tw (os, J.C., De Baere, I., and Plasterk, R.H. 1996.)Tj -0.0333 -1.2 TD 0 Tc 0 Tw (T)Tj 0.5667 0 TD -0.0583 Tw (ransposase is the only nematode protein required for )Tj /F3 1 Tf 9 0 1.913 9 531.45 553.875 Tm 0 Tw (in)Tj -23.5316 -1.2 TD (vitro)Tj /F1 1 Tf 9 0 0 9 334.35 543.075 Tm 0.0005 Tw ( transposition of )Tj /F3 1 Tf 9 0 1.913 9 400.41 543.075 Tm -0.091 Tc 0 Tw [(Tc)-91(1)]TJ /F1 1 Tf 9 0 0 9 414.57 543.075 Tm 0 Tc 0.0005 Tw [(. Genes Dev)72.5(. 10: 755-761.)]TJ -11.4333 -1.2 TD 0.0569 Tw [(Xiong, )16.6(Y)127(., and Eickbush, )17.1(T)111(.H. 1990. Origin and evolution)]TJ 0.6333 -1.2 TD -0.0003 Tw (of retroelements based upon their reverse transcriptase)Tj T* 0.0004 Tw (sequences. EMBO J. 9: 3353-3362.)Tj -0.6333 -1.2 TD 0 Tw (Y)Tj 0.58 0 TD 0.0487 Tw [(oshiyama, M., )19.5(T)37.7(u, Z., Kainoh, )18.9(Y)127(., Honda, H., Shono, )20.6(T)111(.)0(,)]TJ 0.0533 -1.2 TD 0.1109 Tw (and Kimura, K. 2001. Possible horizontal transfer of a)Tj T* 0.0237 Tw (transposable element from host to parasitoid. Mol. Biol.)Tj T* 0 Tw (Evol.)Tj /F3 1 Tf 9 0 1.913 9 337.35 467.475 Tm ( )Tj /F1 1 Tf 9 0 0 9 339.87 467.475 Tm -0.0006 Tw (18: 1952-1958.)Tj -3.1333 -1.2 TD -0.0057 Tc -0.0694 Tw (Zhang, J.K., Pritchett, M.A., Lampe, D.J., Robertson, H.M.,)Tj 0.6333 -1.2 TD -0.0024 Tc -0.0695 Tw [(and Metcalf, W)63.2(.)0(W)50.5(.)0( 2000. )]TJ /F3 1 Tf 9 0 1.913 9 414.39 445.875 Tm (In vivo)Tj /F1 1 Tf 9 0 0 9 439.59 445.875 Tm 0 Tc 0 Tw ( )Tj 0.2061 0 TD -0.0024 Tc -0.0695 Tw (transposon mutagenesis)Tj -13.7861 -1.2 TD 0.0695 Tc 0.1866 Tw (of the methanogenic archaeon )Tj /F3 1 Tf 9 0 1.913 9 466.29 435.075 Tm 0 Tw (Methanosarcina)Tj -16.2916 -1.2 TD 0 Tc (acetivorans)Tj /F1 1 Tf 9 0 0 9 363.33 424.275 Tm ( )Tj 0.3403 0 TD 0.0623 Tw (C2A using a modified version of the insect)Tj /F3 1 Tf 9 0 1.913 9 317.37 413.475 Tm 0 Tw (mariner)Tj /F1 1 Tf 9 0 0 9 347.85 413.475 Tm -0.0662 Tw (-family transposable element )Tj /F3 1 Tf 9 0 1.913 9 463.59 413.475 Tm 0 Tw (Himar1)Tj /F1 1 Tf 9 0 0 9 492.63 413.475 Tm -0.0662 Tw (. Proc. Natl.)Tj -19.4733 -1.2 TD 0.0006 Tw (Acad. Sci. USA. 97: 9665-9670.)Tj -0.6333 -1.2 TD -0.004 Tc -0.0694 Tw [(Zimmerly)71.6(, S., Guo, H., Perlman, P)132(.S., and Lambowitz, )52.4(A.M.)]TJ 0.6333 -1.2 TD 0.0098 Tc 0.1389 Tw (1995. Group II intron mobility occurs by target DNA-)Tj T* 0 Tc 0.0003 Tw (primed reverse transcription. Cell)Tj /F3 1 Tf 9 0 1.913 9 449.37 370.275 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 451.89 370.275 Tm 0.0003 Tw (82: 545-554.)Tj -15.58 -1.2 TD 0.0561 Tc 0.1389 Tw [(Zupunski, V)89.2(., Gubensek, F)108.7(., and Kordis, D. 2001.)]TJ 0.6333 -1.2 TD -0.0138 Tc -0.0695 Tw [(Evolutionary dynamics and evolutionary history in the R)17.9(T)0(E)]TJ T* 0 Tc 0.0502 Tw [(clade of non-L)70.7(TR retrotransposons. Mol. Biol. Evol.)]TJ /F3 1 Tf 9 0 1.913 9 522.9901 337.875 Tm 0 Tw ( )Tj /F1 1 Tf 9 0 0 9 525.9301 337.875 Tm (18:)Tj -23.1733 -1.2 TD 0.0001 Tc (1849-1863.)Tj ET endstream endobj 49 0 obj << /Type /Page /Parent 95 0 R /Resources 50 0 R /Contents 51 0 R /Thumb 86 0 R /MediaBox [ 0 0 595 842 ] /CropBox [ 0 0 595 842 ] /Rotate 0 >> endobj 50 0 obj << /ProcSet [ /PDF /Text ] /Font << /F1 114 0 R /F2 113 0 R /F3 128 0 R >> /ExtGState << /GS1 139 0 R /GS2 138 0 R >> /ColorSpace << /Cs8 112 0 R >> >> endobj 51 0 obj << /Length 399 >> stream BT /F1 1 Tf 9 0 0 9 55.93 779.115 Tm 0 0 0 1 k /GS2 gs -0.0001 Tc -0.0003 Tw (16 Silva )Tj /F3 1 Tf 9 0 1.913 9 95.47 779.115 Tm 0 Tc (et al)Tj /F1 1 Tf 9 0 0 9 112.45 779.115 Tm 0 Tw (.)Tj /F2 1 Tf 37.9351 29.4096 -29.4096 37.9351 34.496 531.1378 Tm 2 Tr 0 0 0 0.45 K 0 J 0 j 0.576 w 10 M []0 d /Cs8 cs 0 scn /GS1 gs 0.0686 Tc -0.0001 Tw (PAGE PROOFS)Tj ET 0 0 0 0 k 41 795.175 114.8 -28.35 re f endstream endobj 52 0 obj [ /Indexed /DeviceRGB 37 53 0 R ] endobj 53 0 obj << /Length 129 /Filter /FlateDecode >> stream HrFFF222XXXzzziiiNNN 񩩩xxxEEE444,,,TTT===###jjjLLLccc 2} endstream endobj 54 0 obj [ /Indexed /DeviceRGB 16 55 0 R ] endobj 55 0 obj << /Length 52 >> stream ՚XXXzzzFFFiii222 endstream endobj 56 0 obj << /Filter [ /ASCII85Decode /FlateDecode ] /Width 74 /Height 105 /ColorSpace 90 0 R /BitsPerComponent 8 /Length 57 0 R >> stream 8;Z\7>EXX^%-0,AE?F@+S2*!'!2/A]\T2]2bn`nNkbO!S# rf2fV;DASA#1(TB=;i^C'KkYjcf%88cDT%dAMn.%]`s5``_,2)dt_PiTqXI0ZV!OS Q=gJ;(;1!A?-q>q%V`_a`0q2DD/q;[e#^,]Hd39cE&4%4hH@$_iCk75kWGj6pf#1+k@k8l/sBRVolcdrHmNMO,#-@c1U ,%sI=PJL5e-7\fXs/Khq!q5%*Q3PjgV \#r9L=e\#PJ(%2[o&LQ?B:tD`m(V9N.JHs3s6`lLaWaN_mtI,LIt'S5BDkeWj[u+J R(Wcr@j";C*"M5T6"!=>V8 T$TDiD;loM,f^6MRTEEko-jE_V2j@d]aa mchWf^@?^5B)jf^;)A~> endstream endobj 57 0 obj 680 endobj 58 0 obj << /Filter [ /ASCII85Decode /FlateDecode ] /Width 74 /Height 105 /ColorSpace 90 0 R /BitsPerComponent 8 /Length 59 0 R >> stream 8;Z]";6kfs$q4;ms4i[QP(RidZaX?<["*MgN!g CMZ7X=7"-$=rn9XM0'OV/.UY`*XRG]4sL1WGudhfoZhDq?R\0 i$jZ>h^^[/#-Zt7mAS->f[qdjm$`$F@KrgkPf:AZ2Af\5ZFQ1+P`M?9Z;4OA W=_jF:6A?s2+4CD.DAhsZLsE^V[kAWO,qTKl\6USVDT;MT:[MTlDIs7'l*;/KMjEP r'V5)28q^CDF7dW!$Oi0<'KoB8j+Y!k6_)da`@Kc$/":4rJi=<90,;&k6*:l3-:V! \Vnk01mFU@1sP%`<"l#G7"0^g5M62jIRi+[O;93emKAuIqd&ECpXBmJ@!U$3F6\(a StS[Fdfl7L3[a]*)/E\1.*k[*E,l_aj;f]/(4O,hjIDGT2)oaLe'7dnQfTTrM*6d/ 7JZuO$;SbN:>PM$PkAXJ%\HMWF%8AWhbS3\1EGFre,Vg4bUIO.E,&G!3i[>uB:RUu )GYp66>K2sad<_a2'C76k&(5JmG&:J`ggqDl%pdZkf.rL-RiW<~> endstream endobj 59 0 obj 580 endobj 60 0 obj << /Filter [ /ASCII85Decode /FlateDecode ] /Width 74 /Height 105 /ColorSpace 90 0 R /BitsPerComponent 8 /Length 61 0 R >> stream 8;Z\7=dF^`%-0,AGouoGS2/\6+makk)4[9/dn_'o#aM+s!mtf`d4YCFHUcH'2N2]k q`E<,KStj>4BjLfZsi45IQ7nU3>MDP?UtV#lfO#XVW2+]db132brLPN1=&daN)XIB :h1AZMPjW*qRVr&mY7;0g%Lg9'*-F;LcY%oHX&5A(LnFQPj1@,-)mA*n*$n]c't[0gdHu(7P<>YLGQffI0,S?&n?bdlE%`a)eRl-.G\A$[5uNZ"_0+dG(QhTlZKs9o,J=4F+r&^(Y]%;fsptfu\tPi^m[T_?#Df5#2\u HL8,lHM0,p*SG_s~> endstream endobj 61 0 obj 809 endobj 62 0 obj << /Filter [ /ASCII85Decode /FlateDecode ] /Width 74 /Height 105 /ColorSpace 90 0 R /BitsPerComponent 8 /Length 63 0 R >> stream 8;Z\6=d$]G#j!c9o01HF\52PQF[k.&0UeiMW[m_o@ft`NKqQGuo%SbPZ`]cpY^qr= C",'B_?EcAr)lEEY"/>o8;pml\?rJBXiks9(O)5*kU&5Z+Y^mih/JDrFM$%ca+8tg5\D-.5p Rar^6G6HAGY(C0n(C4mL#iBeRRK\]&6F+.@>/Z(CFc6am`muC]@d7UIg))DoWMW\i mPA.KIl;"#JK^%d0QH=Q(IKhZbdGqJK8.uN!mQ@)GZXc*cCSr[hG@u7+jkSd.A>N> #9$K'3+&^U?>:`R_YFNI!p?+9!teE)(8<`TQ21<*k*OL+Y4;L"UYIsTF+2=Yu:s?d'1dE #26.e"$\0b/Yp(**8[UCRG_G-0ckR-"Ap8iWdjiH3gNI^r40He@to2NL"s;0!\S$;k"e#<\7Z%sYZ]lrsVPYaFuDlV7;,Su7=J;`k@*4X2t&AsgTh YWBgg)=sYAi@1mSMPo]b@`BB`l)\AFkpDuc:etq6[)pKb/T,[(Sm"g9D_djGNH1m\ /_6*ul=l-R/o9;kh4Hl4:Xf9!QkSTNFZ endstream endobj 63 0 obj 756 endobj 64 0 obj << /Filter [ /ASCII85Decode /FlateDecode ] /Width 74 /Height 105 /ColorSpace 90 0 R /BitsPerComponent 8 /Length 65 0 R >> stream 8;Z]"gQ@+B$q2TlJ+Q+nEKt8dJ--']mt_AoLg_Yu*;f$r8nJ*q\784o?#jO,9-h_; Q1]G4j$;DhEp60CoI^NJq>PB*Ln$><5Qpf,1F&(0:?iPR+C(`_T.PrQbEj.[_+ir= /B#=lW.r5^8Ufk[8Y"K^AraY$>4G6U0'4N'-_/o"dK5iAR^T-N]aOV7hMNZXUhX@A ;E7cE5sQ'\d,$e]'^SUJ9hUgJl./]%1eE-Vr1rR[C47F.Ti&Ipp*#^HP]9g/RZpi` j>$hPeh r++s.N4K$;AL<..i4R5@AXeqoZ#Xm!(J#ei5IK"Dj!9(j:JP9 endstream endobj 65 0 obj 618 endobj 66 0 obj << /Filter [ /ASCII85Decode /FlateDecode ] /Width 74 /Height 105 /ColorSpace 90 0 R /BitsPerComponent 8 /Length 67 0 R >> stream 8;Z]"?'^*c%#%hXhqX8u&$*>r\sMBb,(pLAD9j3NZ(9Sc0-?OZ^_?`0[+<[T(FJfQ ;m"EJk5iGVb'hVT.]%!O0ChTm[Qn]houB&Jq(75 (1I^,@78MPAks\*jSlS$g&VC`TM%[&fFcR2'At923,,4Ar2KgY;e;EJ]#79NaiLA6 p9I0\/PVfB5m$"ACnC`CMtJ$JE$Nent? l!6M'r?Mb;'BsL..?753d$dF(hoFF9h%f39:=Mfdp*B)ipJ4J4MYC',j$YQ#;k1pO kG-Fs`^PY0o)U:V;)+:H+CK-YAmI_$`5Rk/:uFPRK9kUe7[DGql4STD5t/ a\Q32Y2P%JGAluWrMceiL_M3s'rbJ[pZm8pZpIHO(Q);hbYt-5C9Pu[,LM<,8Y7!2 39d>lA(mKPlhPF[`s[uCC:Bfbj_c;cLm)5,)b;LVV1-"/'15@Z-QMXih,MDfnU[5. '+/k6j><,t:?V$QOJ`"&Vf"`Hg:B7,n\c)"`npd\gMH9~> endstream endobj 67 0 obj 706 endobj 68 0 obj << /Filter [ /ASCII85Decode /FlateDecode ] /Width 74 /Height 105 /ColorSpace 90 0 R /BitsPerComponent 8 /Length 69 0 R >> stream 8;Z]">HWT4$q+5ls10;`Sug@)m9VEkP/iOAKRi8$7[5BpG]God5idqU7djZdbt)`2 #35>n3Zd+`"$_&Fl"QmVj[Mk[Ds'+AEkX>rPf1AYq_.L>qpVq7 1Fo(t2UF;0l!%uTPFRWW96dm9MPn$do&-(&mq id$BXU[VYdLkF-!!2kfVptB!=VelkqB7prGF9Et9gK0KeUiNEoKH>i)f(1+'Q"W4b G'D_]7kXcF!9rFHK`~> endstream endobj 69 0 obj 613 endobj 70 0 obj << /Filter [ /ASCII85Decode /FlateDecode ] /Width 74 /Height 105 /ColorSpace 90 0 R /BitsPerComponent 8 /Length 71 0 R >> stream 8;Z]"6'?mD$q3=<47As-aXOP6mkTcX(eI7TN)Q&,[]9cnHsT"0LgReV!'kmFMd=di *LE^[hFS7q7.E!*MWVfLO]k\V`#Y$_&C)@R9hkNj:cd?.:"`;aIKtZ\\Ls//_H2RB KKs8>;kdsa`"&C!`260hU.MW*a_IQ&VA"N[DU>Jk;4qIjPDN3Nb:FV%i_8sm,l+:M n#*;\!iMG_+E`N;U5>XVoXI.qob0irjAC]1V<0`&mE$IaPF==hNf:6ke=c&(8X(;k0) :iIU!.6[+lr8c*omjBW`[0Wu*PNoh-*VSV^*N*f endstream endobj 71 0 obj 587 endobj 72 0 obj << /Filter [ /ASCII85Decode /FlateDecode ] /Width 74 /Height 105 /ColorSpace 90 0 R /BitsPerComponent 8 /Length 73 0 R >> stream 8;Z\7fr`18%&B9gd8.1lqUp>Qc3kI/b[Je&Xe%:FUkB:8$j.>s#JZ)D]Zcs<`aV<* e%"^?=qtp7LA5TDoJ0IDlX#N+:8alfh<(egZUurc,N*B2uM++P-#XHnEq1tqV=3O?1TjhU1_P=PVM>EE"\BR ob4SZkV1pB"=c5W:e`=?R4n^cosgfNkbjR9WA3jd+M16a=foN9hX2>p;C&)sq\bK& HMljdI-+eGhs-^k1K35$)md*NqE agpq4Fd3`nVh/)0KrRoJN_Vp#7&T;J:0O8f7g&@-k4_Zn['F9Rp^)]QZk##SD+VA2 %@uoeF%iKKIX:M?2lS':N&*t K?N1XmcO(%TL9C86^]IF9AAh>9,N%O$'\MCU>mEb?s!m^Zd`+`$3`W endstream endobj 73 0 obj 752 endobj 74 0 obj << /Filter [ /ASCII85Decode /FlateDecode ] /Width 74 /Height 105 /ColorSpace 90 0 R /BitsPerComponent 8 /Length 75 0 R >> stream 8;Z]">B5?M$q4;ms0<_KO&r=J'Kb5TZC]'H3ZUU3.4!@'kh7?`:]0ZP.="/SZb2U: $]3HA:(icmU?'sM7FRG@9.p>X#D-YA2M6_1MgmX:IS2L9o\IUB&Ytr2AdEJL*j0(I5I^t-ZtV" @Lth:-3Q"paO4$?#FGr*91/WZ$Kf-!dr,^.Z &hPZV)#DO_R-ErR[m6Dd6s5H,EF5I,+m8dad55@d0;At$V18ZI9MVqtN"sJI>49tt q>70\4/3RHr-YS?-jr]D:ad"kka1K,Qi?I/F]A,duA[M9a6)V]_fs 5=%H`=.m[fd5Dh*:3ab]VK\f*iiN'7N;70_:#8ZT-A0dq%U$I:G;]_@##Y_B;FoWe 8Po&t'2O!5IKoibp1J1~> endstream endobj 75 0 obj 681 endobj 76 0 obj << /Filter [ /ASCII85Decode /FlateDecode ] /Width 74 /Height 105 /ColorSpace 90 0 R /BitsPerComponent 8 /Length 77 0 R >> stream 8;Z\7>IK/,$tM*lYogS!$`@*5k29)`oCbj1e`WqTE(&OU@$nSejKk#/Vp`g ca>e%p^M,1_QsBo.i^+Rmu)2Ji<\,gkHMGa!0;1HP'?bFJ?o(U'7BnHU#_8:ZiGN3 VAH@HrL"O.A1ekjk9=%kplq;pUS,Mg&g[@tc[di`+hXObTq]\8rLj#-GgcO2GTl>8 6tTt)&GQiAmI*%%0?;PnYCqd n+f,[j@U-,25%tc'/5u,SoK3lH]_j=5-SBr2u]kP-.J[il(ud%&!PP9.KY=E47#Ak .?Q[)-g:s,fu`YXO>MS(Y%.;D:S;4?QmkhJ-sk9j2L\+)j"W&t+N!qH[\ND'Hr#?(4?l6c@s0n;I>Z6R8bQfqKqc0.`d#\2Si H(lCpTdP.g7]jtoO[P)_;BIsV)27Ess'[t*@hqs00pt/2Z=ljb6u$HCGR5>+jlc/b s*%hs'.]8M%MO/g"O]PlV[6&1o/Jp@ja5ul2/fXp-SeOs-OkeP%h/l.5G**nb*Q8# >[9;MXC=RQoR`!the=`H!5d@IiBPg;*9-? PLW(cb"_BdY49GbQCq9?qfn99`H^U7Nq:3_1sV<_7qeEj&c]W:Ugm:Hh$ESV`uZK! 2ZW2,]#t~> endstream endobj 77 0 obj 802 endobj 78 0 obj << /Filter [ /ASCII85Decode /FlateDecode ] /Width 74 /Height 105 /ColorSpace 90 0 R /BitsPerComponent 8 /Length 79 0 R >> stream 8;Z\7D6ed:%.%F!chlAdE6>l>.ftlq&"jG?BAT"Vm1`5Pb9eEPg]+\n_W]M4@sc/3 E3tCK&YLfYb-on@;*7l&)TJ"D3gcr!b[/5Oa2tu?#Zp`_%4D)U3PRqHJ%9ib?9o#W 8^d."\jscm6iP$OarD>.n.:Vg9R#H($h)#+)Htj+hDe;Nl3GNYRhZOQeECFUHHD+: /P/*jb`VH,#>:JC12^gO7$jq?Khj5Ddl=oHd\NeIOB,%SQYE9MP,8:^9L<"L%$WJ; 9SZ&k%]2F"-s9ET:iPN1E:$>b&jnj@Osbhfoo-4ZaI2=s[B-.\p?RepSb;r\T(_++ l!lnT<-'9chhA[[DgUDKVZBuj0*0G]&oVUR(,/]b.94Z' %dU+]:LI8^]FL=D7U(cg2Pt%d@WELNfW]UPb*/m(ZTenLns*Jm<-7<,)V]st0lqVUDs_^B.k_).a*-\HuK 3@q.U\sf>opo9pEa/S*4p)V!('kBJdDtW2AeRgXN+VgIoRf&DAl;M'Ae$Z8*2P?sT n3hM_.ajh49`=q=f_aK&T%mbPOG"kPN9(a@h5)':o%ri4p>[[*;\%)d=&3QRfFG&V NpF/KY%^&Mrolb@3+JLEf3$)fG\e]'EtQ4bPF1*IuL6*=bmB!/J'9Nj[;K/-ntNlfAP*o1\Bh.G endstream endobj 79 0 obj 801 endobj 80 0 obj << /Filter [ /ASCII85Decode /FlateDecode ] /Width 74 /Height 105 /ColorSpace 90 0 R /BitsPerComponent 8 /Length 81 0 R >> stream 8;Z\7gQBAr%&B9g\K>0A<4VC$*%[1:'&Z:J4tI43@X7TJ&1Ad+Y$P:8K)KLO3Vkc`77@KE,;LYHKi*Z' (N%>4$Rg@@,Y2j5EL](9#:K&pDQ5ES-tdeLZek$7bp&JO$bXnKHqGhQ95XeYT%_Jb ".=RbmTu[IeR)I1;rQ/OCqU+E054Isesbl8hr@om$))tO'q^V6@4O:]ENcZUpFeBN cYFQ'NRQIT0Bq&DKG/H'B$@BR4mQ]59ClgZWD?"d"l<3PrC7J]lP5n3'RL'TKRG\s m$7:NbUILq;?7RJ;5)&NG4r8"j"4:o^SAJ5PI>oYIER"<-tCOQlIM'ql+[+6B%*1] eXP&mERd$c."F9'pp26ZND("L=7='Q3q23_&&*pbW`S5H?O"'-Po8;ilm)nsbC+'ViWN&4 6f]ID\9@!e`UqM,YDT<#J()_D2tO!^oH^&tcAGFP;j;_ n[ZUFL6316_l"X&:Xl^;5!s`#Vn+,`j.oS[H"V.J,G6/KqMa-p`9ZGL--6ah(:^5Z bH@q0V'!)jbJQqI]p,HMNUs.#h][E<3fBVAc^e>J;1>e4b\$(\Bp?d[V&n*PE73*p **8"i_9!(,4;eT#k#I,h?c2K0X@VlalE,0!%p9tr\88s*/K@p]/dJ>48PK58_sp5< H))h&!s$%X^T[~> endstream endobj 81 0 obj 807 endobj 82 0 obj << /Filter [ /ASCII85Decode /FlateDecode ] /Width 74 /Height 105 /ColorSpace 90 0 R /BitsPerComponent 8 /Length 83 0 R >> stream 8;Z\7D:5a5%.l7PkC)]B3+]8a$4>j(K@&W4R:hJ$g'Y]/Z\ah.Z+k-!K\i]3AR4<[ /@:+J&tgoYb.%,*.%[aVoj`k1U$GqD.%Dj&kkl3o>%f:15Lt6tr,nP*#fQb26Xr/0 _Q!!SYFe<48a4\s;9!,a87th`AtumJj+\gT<1IH"X2AU"Gm$%uA"JED`%`-a[KG'r ONXBGPD!iTFm-p#O_&J-51:'3-#sDUjX/\ESPW>IDe"KWgYb#UkQ^CV90Mefr',[aJME]Z+ "4i'aeU3ZlL1NhjD:3a9H"T)$i+]>#4_]%u@<-HhSbK`mJB?PKB\Z#L2P,$W&8&,j O>D#;'n$[q:SLV?k+*H%)XX.LV@LPD?(\ba!r^S1_`en.AZP8c7-C'8\?-W,mmpGk XsmFJh:_Rc2+4[7A:]a=LO-fV8PEu,>kHs`fF^sZMF^/=.re-_AV$Zr4H/b4TD2am oF!gMiBG3)$h&S]PDYaW1l_0Me)7hF?:l4SjflH,IR6=JVRAjP!5Mi&9g#lN7`tNB -@p_E5\d@i+*`CT^X2acO$.Z#rrrJI:%0J~> endstream endobj 83 0 obj 828 endobj 84 0 obj << /Filter [ /ASCII85Decode /FlateDecode ] /Width 74 /Height 105 /ColorSpace 90 0 R /BitsPerComponent 8 /Length 85 0 R >> stream 8;Z]">B7\*#_lVYhQicDosdW&dh?XJ!buI2I=P"gSS7NU$_Ra?lp'4c5CSY@J(k/l QOh^,:=nC]N[6hm1k#9rl$NHYcaoW-qV"eU":UthBgGWromQ4\e+"7%'HY6XoT_0a >SDE)IC'tS6rG=4_R"!i]u)tlWJS6L*iEa`(f&meWXTbpDQu,3784Mnn*QZA/#W:X nqlL9a.]Cd)WsI\Q1c?+ZDOi]NmCgu5H`U:EXW4"3,*k7lha^#N&^pb.2#ee6VRA8 k?sg!)W](h0,gq3'ah16mOl2L>D"XmO,ccVNYT>_a]q\*_-KkpKka7lqWa_Tn&C\JWYF'II77eng) :C7>E**=M*(o_CX)cAlIk;])Y&dY;"b;_Sedf^QmJ`EfLlH![@Cc.27704%pZU+b7 ^>PD/ms0/@GUp;_3KaNH'X?XGpWViMQ`+e"(5'+CoO>a&AF ((4soV"o2(Pk2CY$+)K/Vhs_68:irS@ghJ"LR^ioMtr%<50TOF3rtb*_d=q=YMK-N 05[;5R@0J2R@0J2R@2_\q\]D*rir0~> endstream endobj 85 0 obj 625 endobj 86 0 obj << /Filter [ /ASCII85Decode /FlateDecode ] /Width 74 /Height 105 /ColorSpace 90 0 R /BitsPerComponent 8 /Length 87 0 R >> stream 8;Z\uYn=l-%)fT=k4pI::/'>0HD8L"JF3%@pD0_Xq/;E]5q<>b\X<]ibG[YJB^W7= UXZe$XJ39Fg-F/ae*krPGlSrS**"oZ1DU>K&U(2#)63M.EW>CL=TNT`/BD_m=O!&& _8k_T/d:X::aL6G5IHD9DlE&'lop0;-9!;LkpkCLkpl.S+mBlQ1l^I~> endstream endobj 87 0 obj 199 endobj 88 0 obj 481 endobj 89 0 obj << /Filter [ /ASCII85Decode /LZWDecode ] /Length 88 0 R >> stream J,g]g+e/h_!_gCtO=0f)$P%cIi8Zdfc5&3j_8$7g.@L`YKUJNGBP\poR=_;Dl'P(T (7Boo^^S:71(MN]ZQX/+Cbu.lK"p74pe1T%s.DY%&\1TdJhr54.M9au6>79n6`Q:4 PbLSZTLEE(8E@'*1mg_*eTnN*;*'V3+gm-EEetX%;Bo$ur2ss*N`.-!.kG_q6GDD' dKoL!8Ka#EV,@V!\j8ZFbp6EE<9cn=N6j0nf;(&;QU6bUD')c@\ 9-d\DA=cZ0Q>gIM$$;cd2O@&a;X,Nn_aP(]I1aRc(K1^ue> gF/(+GaKo$qneLWDrQ#;5\S(\$q'4Q,85`-8;S(=Z"WSBOV*FM)4,?B],R endstream endobj 90 0 obj [ /Indexed /DeviceRGB 255 89 0 R ] endobj 91 0 obj << /S /D >> endobj 92 0 obj << /Nums [ 0 91 0 R ] >> endobj 93 0 obj << /Type /Pages /Kids [ 110 0 R 1 0 R 4 0 R 7 0 R 13 0 R 16 0 R 19 0 R 22 0 R 25 0 R 31 0 R ] /Count 10 /Parent 94 0 R >> endobj 94 0 obj << /Type /Pages /Kids [ 93 0 R 95 0 R ] /Count 16 >> endobj 95 0 obj << /Type /Pages /Kids [ 34 0 R 37 0 R 40 0 R 43 0 R 46 0 R 49 0 R ] /Count 6 /Parent 94 0 R >> endobj 96 0 obj << /Dt (D:20030912173713) /JTM (Distiller) >> endobj 97 0 obj /This endobj 98 0 obj << /CP (Distiller) /Fi 97 0 R >> endobj 99 0 obj << /R [ 2400 2400 ] >> endobj 100 0 obj << /JTF 0 /MB [ 0 0 595 842 ] /R 99 0 R /W [ 0 15 ] >> endobj 101 0 obj << /Fi [ 98 0 R ] /P [ 100 0 R ] >> endobj 102 0 obj << /Dm [ 595 842 595 842 ] >> endobj 103 0 obj << /Me 102 0 R >> endobj 104 0 obj << /D [ 101 0 R ] /MS 103 0 R /Type /JobTicketContents >> endobj 105 0 obj << /A [ 96 0 R ] /Cn [ 104 0 R ] /V 1.10001 >> endobj 106 0 obj << /CreationDate (D:20030912173702+01'00') /ModDate (D:20030912173702+01'00') /Producer (Acrobat Distiller 5.00 for Macintosh) /Author () /Creator (PageMaker 6.5) /Title (Silva.pm) >> endobj 107 0 obj << /Type /Metadata /Subtype /XML /Length 993 >> stream Silva.pm endstream endobj xref 0 108 0000000000 65535 f 0000026936 00000 n 0000027102 00000 n 0000027275 00000 n 0000041648 00000 n 0000041814 00000 n 0000041987 00000 n 0000063621 00000 n 0000063787 00000 n 0000064047 00000 n 0000074862 00000 n 0000584821 00000 n 0000585650 00000 n 0000585787 00000 n 0000585956 00000 n 0000586130 00000 n 0000601869 00000 n 0000602038 00000 n 0000602212 00000 n 0000616515 00000 n 0000616684 00000 n 0000616858 00000 n 0000631897 00000 n 0000632066 00000 n 0000632240 00000 n 0000647158 00000 n 0000647327 00000 n 0000647589 00000 n 0000658844 00000 n 0001140156 00000 n 0001140985 00000 n 0001141122 00000 n 0001141291 00000 n 0001141465 00000 n 0001154382 00000 n 0001154551 00000 n 0001154725 00000 n 0001171798 00000 n 0001171967 00000 n 0001172141 00000 n 0001189195 00000 n 0001189364 00000 n 0001189538 00000 n 0001206569 00000 n 0001206738 00000 n 0001206912 00000 n 0001224256 00000 n 0001224425 00000 n 0001224599 00000 n 0001236570 00000 n 0001236739 00000 n 0001236913 00000 n 0001237365 00000 n 0001237417 00000 n 0001237620 00000 n 0001237672 00000 n 0001237776 00000 n 0001238615 00000 n 0001238636 00000 n 0001239375 00000 n 0001239396 00000 n 0001240364 00000 n 0001240385 00000 n 0001241300 00000 n 0001241321 00000 n 0001242098 00000 n 0001242119 00000 n 0001242984 00000 n 0001243005 00000 n 0001243777 00000 n 0001243798 00000 n 0001244544 00000 n 0001244565 00000 n 0001245476 00000 n 0001245497 00000 n 0001246337 00000 n 0001246358 00000 n 0001247319 00000 n 0001247340 00000 n 0001248300 00000 n 0001248321 00000 n 0001249287 00000 n 0001249308 00000 n 0001250295 00000 n 0001250316 00000 n 0001251100 00000 n 0001251121 00000 n 0001251479 00000 n 0001251500 00000 n 0001251521 00000 n 0001252097 00000 n 0001252150 00000 n 0001252181 00000 n 0001252225 00000 n 0001252370 00000 n 0001252444 00000 n 0001252561 00000 n 0001252625 00000 n 0001252648 00000 n 0001252700 00000 n 0001252742 00000 n 0001252820 00000 n 0001252877 00000 n 0001252927 00000 n 0001252965 00000 n 0001253045 00000 n 0001253114 00000 n 0001253317 00000 n trailer << /Size 108 /ID[<7d94e6154776bed31175df51ff290c43>] >> startxref 173 %%EOF